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Input: Timestamped Internet photos of a landmark
captured over several years
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Output: 4D reconstruction with controllable viewpoint,
time, and illumination
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Problem Motivation



Chronology reconstruction

 Landmarks evolve over time.

* A 3D reconstruction can only capture a
certain moment of the landmark.

* We need Chronology Reconstruction!
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Times Square, December, 2011




Previous methods: Scene Chronology

November 2005 .. - Novemler 2008
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Matzen and Snavely, Scene Chronology - hftﬁ://bit.ly/qornelI-chrono Matzen and Snavely, Scene Chronology - http://bit.ly/cornell-chrono

5PointZ Times Square

Scene Chronology [Matzen & Snavely, ECCV 2014] only reconstructs planes,
resulting in limited photo-realism.



Previous methods: NeRF-W, HaNeRF

MR The reconstructed appearance
B Uy Y DN blends together.
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5Pointz (The underlying apperance

Trevi Fountain (Nearly constant over time) changes significantly over time)

NeRF-W [Martin-Brualla et al.,, CVPR 2021] and HaNeRF [Chen et al., CVPR 2022]
only handle static scenes (e.g., Trevi Fountain) and cannot reconstruct a scene (e.g., 5Pointz) with significant
changes to the underlying appearance over years.



Proposed Method



Key challenge

* This problem is highly
challenging, as every
photo entangles the viewpoint,
scene content (time) and
illumination.

Rendering with different time
>
[llumination

* We need to decompose these
factors, achieving independent
control.

Rendering with different illumination



4D reconstruction from Internet photos

* Werepresent such a time-varying landmark as color ¢
and density o fields.

C,O0 = F(x, d, ti' 11)



Technical challenges

* Fitting above model to a set of time-stamped
images underfits scene-level temporal
changes, blending different scene
appearances together.




Technical challenges

* Fitting above model to a set of time-stamped
images underfits scene-level temporal
changes, blending different
scene appearances together.

* Incontrast, applying positional encoding to
the time input overfits the temporal signal.




Step function encoding

* Changes in the underlying content of urban scenes often happen
abruptly, and this content typically remains constant for a period
after these changes. We introduce the step function encoding.
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Step function encoding

Formulation: Recovering a noiseless
piecewise signal from a noisy signal.
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Experimental Results
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Controlling the illumination using a reference image
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Fixed viewpoint, changing lllumination
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Times Square




Controlling the illumination using a reference image

Reference image Fixed time, rendering with the illumination of the reference image




The Metropolitan Museum of Art
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Thank you for watching!
Code and Data: https://zju3dv.github.io/neusc



https://zju3dv.github.io/neusc

