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Image Exposure Correction

Overexposure

Underexposure

By J M Ar (Flickr: CC BY-NC-SA 2.0)

» Images captured under improper exposure conditions often suffer from under-exposure or
over-exposure problems, as shown on the left.

» Image exposure errors can occur due to several factors: errors in measurements of through-the-
lens metering, hard lighting conditions, dramatic changes in the brightness level of the scene,
and errors made by users in the manual mode. ’



Motivation
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(a) “Detail” degradation 1llustration

Over-exposure image Laplacian pyram1d ‘Reconstructed i 1mage Ground truth'
(b) “Contrast” degradation 1llustration

The under and over-exposure 1mages often suffer from contrast degradation and detail distortion.

Contrast degradation will destroy the statistical properties of low-frequency components.
Detail distortion will disturb the structural properties of high-frequency components



Previous Methods
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Proposed Method
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(a) Decoupling (b) Aggregating

Overview of our proposed DAConv. (a) In the training phase, each TConv in baselines is substituted by a DAConv.
(b) After training, the DA, CA, a4, and a.,are aggregated into a single TConv again by aggregating.



Experiment Results

ME dataset and SICE dataset.

ME dataset [ ']

SICE dataset [*]

Under-exposure

Over-exposure

Under-exposure

Over-exposure

PSNRT SSIMT PSNR?T SSIM+t PSNR? SSIM+ PSNR? SSIM*t
RUAS [707] 13.430 0.681 6.390 0.466 7.507 0.246 5.806 0.089
RUAS* 14.867+1.437  0.708+0.027 6.940+0.550  0.486+0.020 | 8.528+1.021  0.356+0.110 | 5.938+0.132  0.137+0.048
Zero-DCE [ 1] 14.550 0.589 10.400 0.514 15.972 0.653 9.078 0.590
Zero-DCE* 15.067+0.517  0.771+0.182 | 10.847+0.447 0.710+0.196 | 16.229+0.257 0.656+0.003 | 9.315+0.237  0.595+0.005
RetinexNet [ ('] 12.130 0.621 10.470 0.595 15,239 0.613 16.863 0.638
RetinexNet* 12.208+0.078  0.607-0.014 | 18.576+8.106  0.794+0.199 | 15.637+0.398  0.642+0.029 | 17.009+0.146  0.645+0.007
UNet [ 7] 18.437 0.821 17.440 0.809 16.036 0.650 17.209 0.664
UNet* 18.524+0.087  0.831+0.010 | 17.953+0.513  0.822+0.013 | 16.521+0.485  0.678+0.028 | 17.239+0.030  0.684+0.020
DRBN [ 4] 19.740 0.829 19.370 0.832 17.249 0.707 18.275 0.700
DRBN#* 20.630+0.890  0.888+0.059 | 19.100-0.270  0.878+0.046 | 17.337+0.088  0.709+0.002 | 18.896+0.621  0.780-+0.080
SID [7] 19.370 0.810 18.830 0.806 17.065 0.692 18.728 0.706
SID* 19.484+0.114  0.829+0.019 | 19.015+0.185  0.820+0.014 | 17.539+0474  0.724+0.032 | 18.796+0.068  0.714+0.008
MSEC [] 20.520 0.813 19.790 0.816 18.291 0.606 17.755 0.626
MSEC* 21.530+1.010  0.859+0.046 | 21.550+1.760  0.875+0.059 | 18.949+0.658  0.655+0.049 | 17.979+0.224  0.660+0.034
ENC [14] 22.720 0.854 22.110 0.852 18.665 0.696 18.974 0.703
ENC* 23.320+0.600  0.909+0.055 | 22.600+0.490  0.909+0.057 | 19.072+0.407  0.701+0.005 | 19.176+0.202  0.707+0.004
FECNet [ 7] 22.960 0.860 23.220 0.875 18.012 0.685 18.496 0.691
FECNet* 23.150+0.190  0.865+0.005 | 23.410+0.190  0.880-+0.005 | 18.347+0.335  0.691+0.006 | 18.893+0.397  0.698+0.007

The bold and bold* represent performance training with Vanilla Conv(VC) and proposed DAConv.
The bold and bold represent our cost-free improvement compared to the baselines VC and a slight degradation after using DAConv.



Experiment Results

LOLV1, LOL-V2-R, and LOL-V2-S datasets.

LOLVI [ 1] LOL-V2-R [ ] LOL-V2-S[ ]
PSNRT SSIMT PSNRT SSIMT PSNRT SSIMT
ZeroDCE [ 1] 15.296 0.518 12.382 0.448 16.954 0.810
ZeroDCE* | 16.206:0910  0.522:0.004 | 13.445:1.063 0.460:0012 | 17.372+0.418  0.820:0.01
UNet [27] 17.480 0.753 18.449 0.668 18.131 0.843
UNet* 17.671+0.191  0.764:0011 | 18.533+0.084  0.718:0.050 | 20.079+1.948  0.878+0.035
DRBN [ /] 19.068 0.790 19.421 0.729 21.012 0.895
DRBN*# 19.190+0.122 0.812+0.022 19.855+0.434 0.747+0.018 21.100+0.088 0.899+0.004
SID [] 18.577 0.789 18.640 0.703 20.801 0.884
SID* 19.260+0.683 0.812+0.023 18.892+0.252 0.713+0.01 22.267+1.456 0.910+0.026
MSEC [] 18.845 0.679 19.031 0.662 19.582 0.705
MSEC* 20.895+2.050 0.748+0.069 20.192+1.161 0.670+0.008 20.745+1.163 0.813+0.108
ENC [ 1] 22.310 0.837 21.004 0.802 21.608 0.887
ENC* 22.856:0546  0.843:0.006 | 21.764+0.760  0.839:0.037 | 22.337+0729  0.902:0.015

The bold and bold* represent performance training with Vanilla Conv(VC) and proposed DAConv.

The bold and bold represent our cost-free improvement compared to the baselines VC and a slight degradation after using DAConv.



Comparison of Enhanced Results

The Comparison of Enhanced Results on SCIE datasets



Feature visualization
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Feature maps of Contrast Aware and Detail Aware Unit
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