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* Borrow from [ * We use DLTR short for Deep Long-Tailed Recognition

[1] Deep Long-Tailed Learning: A Survey. IEEE TPAMI, 2022.
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* Cost Sensitive Re-balancing: LDAM-DRW!(NeurlPS’19), BalancedSoftmax[?(NeurlPS’20)

e Loss function

* Augmentation-based Re-balancing: M2mUBl(CVPR’20), RSG*(CVPR’21)

* Data generation

* Decoupling-based: MiSLAS®(CVPR’21), GCL!®(CVPR’22)

* Representation

But seldom works research on parameter perturbation

[1] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss. In NeurlPS 2019.
[2] Balanced Meta-Softmax for Long-Tailed Visual Recognition. In NeurlPS 2020.
[3] M2m: Imbalanced Classification via Major-to-minor Translation. In CVPR 2020.

[4] RSG: A Simple but Effective Module for Learning Imbalanced Datasets. In CVPR 2021.
[5] Improving Calibration for Long-Tailed Recognition. In CVPR 2021.

[6] GCL: Long-tailed Visual Recognition via Gaussian Clouded Logit Adjustment. In CVPR 2022.
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Parameter Perturbation Solutions in General Optimization Problem
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(a) Flatter minima

A flatter minima usually indicates better generalization
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(b) Sharper minima

* Applications

SWAU (NeurlPS’19), SAM[2! (ICLR’21),
GPNBI (ICML'22)

* General Flattening
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* Post Flattening

PoF4! (ICML’22) Continual Learning

/

FS-DGPMIS! (ICLR’21), F2MI6! (NuerlPS’21),
rwSAMU! (ICLR'22)

[1] Fantastic generalization measures and where to find them. In NeurlPS 2019.
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Imbalanced Learning

[2] Sharpness-aware minimization for efficiently improving generalization. In ICLR 2021.
[3] Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning. In ICML 2022.
[4] PoF: Post-Training of Feature Extractor for Improving Generalization. In ICML 2022.

[5] Flattening Sharpness for Dynamic Gradient Projection Memory Benefits Continual Learning. In ICLR 2021.
[6] Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima. In NeurlPS 2021.

[7] Self-supervised Learning is More Robust to Dataset Imbalance. In ICLR 2022.
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Are current DLTR models have flat minima?




Motivation

 We investigate the local minima status of
mainstream DLTR models:
« ERM (CE), LDAM-DRW, MISLAS, GCL

 We randomly perturbate the trained model
5 times and observe their vary loss values.

The loss function values of LDAM-DRW and
GCL fluctuate more than CE.

U

LDAM-DRW and GCL have sharper minima than
CE, which indicates a castle of DLTR models
lack of flat minima.
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(b) 1D local loss landscape.
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Motivation

Can current flattening operations help?

* We investigate 4 popular flattening operations:  Lsywawsn1=sN2-SN128GP18GP2mGP1.2 B MP.A 8 MP.2 8 MPA.2
« SWAI  Spectral Normalization (SN)%,

Gradient Penalization (GP)B!, Model °
Perturbation (MP)“! :’ I I
- . _= B - _l.l
S0 T e " 2
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The results demonstrate that a naive §-s
integration of general flattening operations 7
with DLTR models can hardly bring 7 ¢RT M2m LDAM-DRW  MiSLAS Gl
improvements. .

[1] Asymmetric valleys: Beyond sharp and flat local minima. In NeurlPS 2019.

[2] Large-scale gan training for high fidelity natural image synthesis . In ICLR 2019.

[3] Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning. In ICML 2022.

[4] Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by Finding Flat Minima. In NeurlPS 2021. -




Framework

A Close Look at the Characteristic Radius of Flat Minima:

V,L
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More details please refer to our paper!
7




Framework
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Framework
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(a) Stage 1: Class-conditional sharpness-aware minimization. We take three
classes and classifier perturbation as examples for illustration.

Stage 2 ————— =

l
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Mini-batch
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(b) Stage 2: Robust training of the classifier by progressively gener-
ating adversarial features.
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Evaluation

CIFAR-10-LT CIFAR-100-LT
Imbalance Ratio 200 100 50 200 100 50
CE 65.68 70.70 74.81 | 34.84 38.43 43.90
CE + Mixup [57] 65.84 7296 7948 | 3584 40.01 45.16
LDAM-DRW [7] 73.52 77.03 81.03 | 3891 4204 47.62
De-confound-TDE [45] 80.60 83.60 44.15 50.31

CE + Mixup + cRT [20] 73.06 79.15 84.21 | 41.73 45.12 50.86

BBN [63] 73.47 79.82 81.18 | 37.21 4256 47.02
Contrastive Learning [51] | - 81.40 85.36 | - 46.72 51.87
BGP [49] - - - 41.20 45.20 50.50
MiSLAS [62] 77.31 82.06 85.16 | 42.33 47.50 52.62
VS + SAM [38] - 82.40 - - 46.60 -

GCL [26] 79.03 82.68 8546 | 4488 48.71 53.55
CC-SAM 80.94 83.92 86.22 | 45.66 50.83 53.91

CC-SAM achieves the state-of-the-art performance
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Evaluation

Dataset || Method Backbone | Many | Medium | Few | Overall
CE ResNeXt-50 | 65.9 37.5 7.0 | 444
Decouple-T-norm [20] ResNet-50 56.6 442 274 | 46.7
Balanced Softmax [40] ResNeX1-50 | 64.1 48.2 334 | 523
LADE [17] ResNeXt-50 | 64.4 | 47.7 343 | 52.3
RSG [30] ResNeX1-50 | 63.2 48.2 322 | 518
ImageNet-LT DisAlign [55] ResNet-50 61.3 52.2 314 | 52.9
ResNeXt-50 | 62.7 52.1 314 | 534
ResLT [Y] ResNeXt-50 | 63.0 | 533 355 | 529
BGP [49] ResNet-30 - - - 51.5
MiSLAS [62] ResNet-50 - - - 52.7
LDAM-DRW + SAM [35] | ResNet-30 62.0 52.1 348 | 53.1
GCL [26] ResNet-30 - - - 54.9
CC-5AM ResNet-50 614 495 37.1 | 524
ResNeXt-50 | 63.1 534 41.1 | 554
CE ResNet-152 | 45.7 27.3 8.2 30.2
Decouple-T-norm [20] ResNet-152 | 37.8 40.7 31.8 | 379
Balanced Softmax [40] ResNet-152 | 42.0 39.3 30.5 | 38.6
LADE [17] ResNet-152 | 42.8 39.0 31.2 | 388
RSG [50] ResNet-152 | 419 | 41.4 32.0 | 393
Places-LT DisAlign [55] ResNet-152 | 404 | 42.4 30.1 | 393
ResLT [Y] ResNet-152 | 39.8 43.6 314 | 398
MiSLAS [62] ResNet-152 | - - - 40.2
GCL [26] ResNet-152 | - - - 40.6
CC-SAM ResNet-152 | 41.2 | 42.1 364 | 40.6
CE ResNet-30 72.2 63.0 572 | 61.7
Decouple-T-norm [20] ResNet-50 65.6 65.3 65.9 | 65.6
Balanced Softmax [40] ResNet-50 - - - 70.6
LADE [17] ResNet-30 - - - 70.0
RSG [50] ResNet-50 - - - 70.3
iNaturalist 2018 || DisAlign [55] ResNet-50 - - - 70.6
ResLT [Y] ResNet-50 - - - 70.2
BGP [49] ResNet-50 70.0 69.9 69.6 | 70.5
MiSLAS [62] ResNet-30 - - - 71.6
LDAM-DRW + SAM [35] | ResNet-30 64.1 70.5 71.2 | 70.1
GCL [26] ResNet-50 - - - 72.0
CC-SAM ResNet-30 65.4 70.9 72.2 | 709

CC-SAM shows competitive on large scale
datasets.

CC-SAM generally improves medium and
tail classes.

As a theoretical motivated variant, CC-SAM
outperforms the naive application of SAM,
which demonstrates the superiority of
class-conditional perturbation.
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Evaluation

ImageNet-LT Places-LT
Method Many | Medium | Few ||F-measure|| Many | Medium | Few ||F-measure
CE 40.1 10.4 0.4 1]0.295 45.9 224 0.4 []0.366
Lifted Loss [36] | 34.8 29.3 17.4 110.374 41.0 35.2 23.8 10.459
Focal Loss [28] | 35.7 29.3 15.6 |10.371 41.0 34.8 22.3 110.453
Range Loss [59] | 34.7 294 17.2 110.373 41.0 35.3 23.1 110.457
OpenMax [3] 35.8 30.0 17.6 ]0.368 41.1 354 23.2 []10.458
OLTR [32] 41.9 33.9 17.4 110.474 44.6 36.8 25.2 1]0.464
[EM [65] 46.1 42.3 20.1 []10.525 48.8 42.4 28.9 110.486
LUNA [5] 48.2 | 44.7 23.6 (10.579 48.1 41.6 29.0 110.491
CC-SAM 61.4 | 495 37.1 []0.552 41.2 | 41.8 36.4 [10.510
< > N ——

OLTR evaluation!ll demonstrates CC-SAM learns a robust representation

[1] Open Long-Tailed Recognition In A Dynamic World. IEEE TPAMI, 2022. »




Micro Benchmark

cRT | Stage 1 + dir | Stage 1 + mag | Stage 2 | Acc

v 378 Both magnitude and direction contribute
v |V 38.9 to the performance, which demonstrates
ﬁ y g %? the superiority of our derived class-
Vo | / v/ 40.6 conditional perturbation.

. Stage 1 + dir: enforce parameter perturbation along the recommended direction with
magnitude of 1.

- Stage 1 + mag: enforce perturbation with the recommended magnitude in a random direction.
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Visualization
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Thanks for your listening!

Contact Information

Feel free to contact us if you are interested in our work!
zzp1994@mail.ustc.edu.cn, lanqingli1993@gmail.com

github.com/zzpustc/CC-SAM
Poster: # TUE-AM-333
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