# ABLE-NeRF: Attention-Based Rendering with Learnable Embeddings

# for Neural Radiance Field





S-LAB
FOR ADVANCED
INTELLIGENCE

Zhe Jun Tang<sup>1</sup>, Tat-Jen Cham<sup>2</sup>, Haiyu Zhao<sup>3</sup>

<sup>1</sup>S-Lab Nanyang Technological University, <sup>2</sup>Nanyang Technological University, <sup>3</sup>SenseTime Research

#### Render accurate view dependent effects for view synthesis

- Standard volume rendering method with NeRF accumulates features in color space result in rendering blurry transparent and glossy surfaces
- Prior Volume Rendering works include a view dependent scattering term or an opacity hull/ 'alpha sphere' which stores an opacity value viewed at direction  $\omega$
- NeRF computes σ based on spatial coordinates ignore dependency on viewing angles, resulting in 'blurry' surfaces





NeRF based approaches render surfaces exhibiting both translucency and specularity poorly

## **Our Contributions**

- A new approach demonstrating the capability and superiority of transformers modelling a physics-based volumetric rendering approach
- A novel memorization-based framework with Learnable Embeddings (LE) to capture and render detailed view-dependent effects with a cross-attention network

#### **ABLE-NeRF**



#### **Attention Based Rendering**

- Sample conic frustums along ray and append a Ray Token
- Constrain sequence of Ray Token and ray samples with masking to encode a uni-directional ray information
- Each sample only attends to Ray Token and samples lying in-front of it
- Decode Ray Token to obtain Diffused Color

|              | Ray Token | Ray Sample 1 | Ray Sample 2 | ••• | Ray Sample N |  |
|--------------|-----------|--------------|--------------|-----|--------------|--|
| Ray Token    | 0         | 0            | 0            | 0   | 0            |  |
| Ray Sample 1 | 0         | 0            | -∞           | -∞  | -∞           |  |
| Ray Sample 2 | 0         | 0            | 0            | -∞  | -∞           |  |
|              |           |              |              |     |              |  |
| Ray Sample N | 0         | 0            | 0            | 0   | 0            |  |

Ray Masking in AB Transformer

### **Learnable Embeddings**

- Include Embeddings as learnable network parameters to capture static scene illumination
- Query Embeddings with View Token to recover view-dependent color



 Our model can recover intra-scene surface reflections by querying from Embeddings for static scene illumination compared to strict ray casting volume rendering methods

#### **Experimental Results**

|              | Chair | Lego  | Materials | Mic   | Hotdog | Ficus | Drums | Ship  |
|--------------|-------|-------|-----------|-------|--------|-------|-------|-------|
| PhySG        | 24.00 | 20.19 | 18.86     | 22.33 | 24.08  | 19.02 | 20.99 | 15.35 |
| VolSDF       | 30.57 | 29.46 | 29.13     | 30.53 | 35.11  | 22.91 | 20.43 | 22.51 |
| Mip-NeRF     | 35.12 | 35.92 | 30.62     | 36.76 | 37.34  | 33.19 | 25.36 | 30.52 |
| Ref-NeRF     | 35.83 | 36.25 | 35.41     | 36.76 | 37.72  | 33.91 | 25.79 | 30.28 |
| Ours (no LE) | 35.76 | 36.62 | 34.57     | 35.90 | 38.68  | 34.28 | 25.98 | 30.60 |
| Ours         | 36.25 | 38.03 | 35.46     | 37.11 | 39.07  | 35.69 | 26.84 | 31.75 |
|              |       |       |           |       |        |       |       |       |

PSNR Comparison on Blender Dataset. For additional results, refer to paper.



#### Conclusion

- Our end-to-end deep learning-based approach with transformers is capable of learning a physics-based volumetric rendering method without an explicit formulation
- Inclusion of Learnable Embeddings to capture static scene illumination allows ABLE-NeRF to produce convincing view-dependent lighting effects



**More Information Visit** 

#### References

Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler, and Leonard McMillan. Image based 3d photography using opacity hulls. ACM Transactions on Graphics (TOG), 21(3):427–437, 2002

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 202:

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields.

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 5481–5490. IEEE, 2022.

Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics (1995)