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Background

Deep Probabilistic Registration
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Input point cloud
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Transformation

It is suitable for point clouds with
density variations;
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Background

Challenges

/

s+ Deep point cloud registration methods depend on large amounts of ground

truth transformations or correspondences;

s Underperform on point clouds with partial overlaps.
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Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Our methods:

1. A point cloud should share an identical posterior distribution in coordinate and feature

spaces — Self-Consistency Loss function.

2. The GMMs from two point clouds should be the almost same in their overlapped regions

— Cross-consistency Loss function.

3. The detected overlapped regions should have the almost same clustering centroids

— Contrastive Loss function.
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Our solution
Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Self-consistency loss

the probability of p¥ belonging to the cluster j in coordinate space the probability of pj* belonging to the cluster j in feature space
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Point cloud P* = {p}}\_, coordinate space feature space

Points of a point cloud share a similar posterior probability in feature and coordinate spaces “ min Ly, = -Zl.j yi’fjlog(sgfj)



Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Cross-consistency loss

Transformation

source PS overlaps in P°
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Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Local contrastive loss

feature f;°

maximize the dissimilarity
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Our solution
Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration
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Self-consistency: points of a point cloud share a
similar posterior probability in feature and » (PSS F2 03
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Our solution

Experiments

Dataset

=  Evaluation for real word dataset:

= 3DMatch and 3DLoMatch

= Evaluation for synthesis dataset:

= ModelNet40
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Baselines

= Supervised methods

= OMNet

=  Unsupervised methods

= SGP+R10K

= UGMM



Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Method
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Results on both 3DMatch and 3DLoMatch datasets.
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Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration

Method
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Results on both ModelNet and ModelLoNet datasets.
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Experiment

Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration
Qualitative Results on 3DLoMatch
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Our solution

Unsupervised Deep Probabilistic Approach for Partial Point Cloud Registration
Qualitative Results on ModelLoNet
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Thank You for Listening!




