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1. DAVIS

2. BURST

3. YouTube-VIS

4. OVIS

5. KITTI-STEP

6. CityscapesVPS

7. VIPSeg
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Unified Task Definition

• Video segmentation tasks can be conceptually unified

• All of them require segmenting a set of ‘targets’ from the input video

• Video Instance Segmentation:
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Unified Task Definition

• Video segmentation tasks can be conceptually unified

• All of them require segmenting a set of ‘targets’ from the input video

• Point Exemplar-guided Tracking:

These specific objects with 
the first-frame points…



Unified Task Definition

• Architecture is largely task-agnostic

• Encode the task-specific targets as dynamic network inputs (queries)

• Can theoretically tackle any segmentation task

MODEL
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Architecture
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Temporal Neck

• Masks generated by computing dot-product

• Good mask quality conditioned on consistent video features

• Backbone: Per-image network e.g. ResNet or Swin

• Motivation for temporal neck: incorporate temporal context in video 
features



Temporal Neck

• Based on deformable deformable attention 
encoder

• Multi-scale features from backbone are 
iteratively refined

• Contains 6 layers. Each layer contains two 
parts:

1. Deformable attention separately within each 
image frame

2. Self-attention within grid-like cells across all 
frames 
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Benchmark Results

Video Instance Segmentation (VIS)

Method AP AP50 AP75 AR1 AR10

VITA 57.5 80.6 61.0 47.7 62.6

TarViS 60.2 81.4 67.6 47.6 64.8

Difference +2.7 +0.8 +6.6 -0.1 +1.8

Method AP AP50 AP75 AR1 AR10

IDOL 42.6 65.7 45.2 17.9 49.6

TarViS 43.2 67.8 44.6 18.0 50.4

Difference +0.6 +2.1 -0.8 +0.1 +0.8

YouTube-VIS 2021 (val)

OVIS (val)



Benchmark Results

Video Object Segmentation (VOS)

Method J&F J F

XMem 86.2 82.9 89.5

TarViS 85.3 81.7 88.5

Difference -0.9 -1.2 -1.0

DAVIS (val)

object queries

Object 
Encoder

Information loss



Benchmark Results

Point Exemplar-guided Tracking (PET)

Method HOTAall HOTAcom HOTAunc

STCN+M2F 24.4 44.0 19.5

TarViS 37.5 51.7 34.0

Difference +12.9 +7.7 +14.5

BURST (val)

Method HOTAall HOTAcom HOTAunc

STCN+M2F 24.9 39.5 22.0

TarViS 36.1 47.1 33.8

Difference +11.2 +7.6 +11.8

BURST (test)



Benchmark Results

Video Panoptic Segmentation (VPS)

Method STQ AQ SQ

Mask Propagation 67.0 63.0 71.0

TarViS 72.0 72.0 73.0

Difference +5.0 +9.0 +2.0

KITTI-STEP (val)

Method VPQ VPQth VPQst

VIP-DeepLab 63.1 49.5 73.0

TarViS 58.9 43.7 69.9

Difference -4.2 -5.8 -3.1

CityscapesVPS (val)



Benchmark Results

Video Panoptic Segmentation (VPS)

Method VPQ VPQth VPQst STQ

Clip-PanoFCN 22.9 25.0 20.8 31.5

TarViS 48.0 58.2 39.0 52.9

Difference +25.1 +33.2 +18.2 +21.4

VIPSeg (val)



Qualitative Results (OVIS)



Qualitative Results (KITTI-STEP)



Qualitative Results (DAVIS)



Qualitative Results (BURST)



Conclusion

• TarViS: A unified approach for video 
segmentation tasks

• Network is task-agnostic: formulate task as 
queries

• High quality results on 7 benchmarks 
spanning 4 different tasks

• Pre-trained models + source code available 
on GitHub

https://github.com/Ali2500/TarViS
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