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Unified Task Definition

* Video segmentation tasks can be conceptually unified
* All of them require segmenting a set of ‘targets’ from the input video

* Video Instance Segmentation:
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* Video segmentation tasks can be conceptually unified
* All of them require segmenting a set of ‘targets’ from the input video
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Unified Task Definition

* Video segmentation tasks can be conceptually unified
* All of them require segmenting a set of ‘targets’ from the input video

e Video Object Segmentation (VOS):

These specific objects with
the first-frame masks...




Unified Task Definition

* Video segmentation tasks can be conceptually unified
* All of them require segmenting a set of ‘targets’ from the input video

* Point Exemplar-guided Tracking:

These specific objects with
the first-frame points...




Unified Task Definition

* Architecture is largely task-agnostic
* Encode the task-specific targets as dynamic network inputs (queries)

e Can theoretically tackle any segmentation task
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Temporal Neck

* Masks generated by computing dot-product
* Good mask quality conditioned on consistent video features
* Backbone: Per-image network e.g. ResNet or Swin

* Motivation for temporal neck: incorporate temporal context in video
features



Temporal Neck
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Temporal Neck

e Based on deformable deformable attention
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Temporal Neck

e Based on deformable deformable attention
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Benchmark Results

Video Instance Segmentation (VIS)

YouTube-VIS 2021 (val)

VITA 57.5 80.6 61.0 47.7 62.6

TarViS 60.2 81.4 67.6 47.6 64.8

Difference +2.7 +0.8 +6.6 -0.1 +1.8
OVIS (val)

IDOL 42.6 65.7 45.2 17.9 49.6

TarViS 43.2 67.8 44.6 18.0 50.4

Difference +0.6 +2.1 -0.8 +0.1 +0.8




Benchmark Results

Video Object Segmentation (VOS)

DAVIS (val)
XMem 86.2 82.9 89.5
TarViS 85.3 81.7 88.5
Difference -0.9 -1.2 -1.0

Object
Encoder

object queries
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Information loss




Benchmark Results

Point Exemplar-guided Tracking (PET)

BURST (val)
" Method | HOTA, | HOTA, | HOTA,.
STCN+M2F 24.4 44.0 19.5
Tarvis 37.5 51.7 34.0
Difference +12.9 +7.7 +14.5
BURST (test)
| Method | HOTA,, HOTA,__ HOTA,,__
STCN+M2F 24.9 39.5 22.0
Tarvis 36.1 47.1 33.8

Difference +11.2 +7.6 +11.8




Benchmark Results

Video Panoptic Segmentation (VPS)

KITTI-STEP (val)

Mask Propagation 67.0 63.0 71.0
TarViS 72.0 72.0 73.0
Difference +5.0 +9.0 +2.0

CityscapesVPS (val)

" wewod | _wea_ | wa» | war

VIP-Deeplab 63.1 49.5 73.0
TarViS 58.9 43.7 69.9
Difference -4.2 -5.8 -3.1




Benchmark Results

Video Panoptic Segmentation (VPS)

VIPSeg (val)
__wethod | wea_| wea® | weat | sia__
Clip-PanoFCN 22.9 25.0 20.8 31.5
TarViS 48.0 58.2 39.0 52.9

Difference +25.1 +33.2 +18.2 +21.4




Qualitative Results (OVIS)




Qualitative Results (KITTI-STEP)




Qualitative Results (DAVIS)




Qualitative Results (BURST)
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Conclusion

e TarViS: A unified approach for video
segmentation tasks

* Network is task-agnostic: formulate task as
queries

* High quality results on 7 benchmarks
spanning 4 different tasks

* Pre-trained models + source code available
on GitHub

https://qgithub.com/Ali2500/TarViS

Carnegie
Mellon

University
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