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Why do we need this?

> Generating photos satisfying multiple constraints require paired data
consisting of all modalities (i.e., conditions) and their corresponding output

> We propose a diffusion-based solution for image generation under the
presence of multimodal priors without paired data.

> Qur method is easily scalable and can be incorporated with off-the-shelf
models to add additional constraints.
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How is it different?

> Existing methods require training a model with all conditions.
> Qur method just needs one at a time
> Sampling strategy that interpolates unconditional domains
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What does it do?
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How does it work?

> Reverse samplina in a diffusion model can be written as,

1 )
2
Zt—1 < 'ﬁ(zt_ﬁtse(ztaxat)) + oyn n :N(OaI)
- Mt
> Here sy is the score function describing the diffusion process, ¢gyis the prediction of diffusion U-Net
7] (zta z, t)

s6(2t,t) = Vg log P(z¢|x) = oA
> The effective unconditional density of the image space we are trying to model can be decomposed as a
combination of multiple subspaces united by generalized product of experts.

a Y, P (2]z:)
P(z) = [[ P&(2l¢)  P(zX) = |2) ~ KP(2) ﬁl ow( "”)
1=1 =1

> Utilizing this, the effective score becomes

N N N
€. = Zwiei(zt,mi,t) — (Z w; — 1) Zajej(zt,(b,t). w; > 1
i=1 i=1 g=1 —
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pretrained text based generator and ImageNet class generator

> Generating a composite scene consisting of a text based background and an ImageNet class by combining a
> Generating faces satisfying semantic constraints and text descriptions

(a) {ImageNet class, Text} — Generic Scene

Tibetan terrier  Teddy Bear  Triceratopt Treefrog  Otterhound Tibetan terrier  Teddy Bear  Triceratops
GLIDE [21]
(b) {(Face, hair) semantic labels, Text}—» Facial image

.
Treefrog  Otte hound

OURS

(©) {Sketch, Texl}—> Facial image

Semantic Label This person This person ha. Sketch This person has
W iir black hair and bre nd
wavy black hair wears beard v

blonde hair and
black eyebrows
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Cross domain Interpolation

o

> Interpolation by varying strengths of unconditional model and conditions.
> Unite and Conquer can achieve any level of contextual interpolation across domains
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Thank you!



