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In this paper, we propose a novel approach to open-vocabulary object detection, that is aligning bag of regions.


@ .
Outline

e Introduction

e Method

- |
" [EEE] NANYANG w JUNE 18-22, 2023 ¥ [l &4
. AR O osicAL S-LAB - é I%!jl ==
UNIVERSITY FOR ADVANCED [ )i} CVPR‘W;%W i
sense time

SINGAPORE INTELLIGENCE

VANCOUVER, CANADA

* Experiment



演示者
演示文稿备注
We first introduce the task definition of open-vocabulary object detection, and briefly discuss the current distillation-based methods and vision-language models. Then we propose our key idea of aligning bag of regions. 
The we introduce the methodology of our work, including forming, representing and aligning the bag of regions. 
Finally we show the experiment results.
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Open-vocabulary object detection aims at detecting objects of novel categories that are unseen in the training.
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Individually align region embeddings to the corresponding features extracted from the
Vison-Language Models (VLMs), e.g., CLIP.
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A typical solution to this task is distilling knowledge from pretrained vision-language models such as CLIP. Current distillation-based methods individually align region embeddings to the corresponding features extracted from the Vison-Language Models. However, during the pretraining of vision-language models, the image-text pairs may include multiple concepts instead of single objects. For example, in the Figure (a) above, the image text pair contains simultaneously horse and trolley.
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* Analysis

“There is a desk.” (0.265)
“There is a desk with a monitor.” (0.277)
“There is a desk with a monitor and keyboard.” (0.283)

“There is a desk with a monitor, keyboard and mouse.” (0.294)

“There is a black motorcycle.” (0.272)
— | “There is a black motorcycle parked on the road.” (0.279)
| “There are a black motorcycle and a car parked on the road.” (0.295)

“There is a black motorcycle parked on the road in front of a car.” (0.304)

The VLMs can capture the co-occurrence of objects.
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And here we show an analysis of vision-language models’ ability to capture the co-occurrence of objects. As the text descriptions become complete, their similarity with the corresponding image increase, indicating that the co-occurring objects are represented by the vision-language model.
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Therefore, we propose to lift the distillation from individual regions to a bag of regions. Specifically, we regard regions as words and mimic the bag-of-words representation of a sentence in language, so that we can form a bag of regions to obtain a sentence-like representation.


r 5
il
VANCOUVER, CANADA

JUNE 18-22, 2023

@in CVPR

s-LAB D

NANYANG
TECHNOLOGICAL
UNIVERSITY FOR ADVANCED
SINGAPORE INTELLIGENCE

Outline

e Method




B
Method

* The Open-vocabulary Detector

-[:Box Regression
— i‘ Linear |—>[]—
e Pseudo

EZoxd NANYANG S_LAB m JUNE 18-22, 2023

TECHNOSLOGICAL . CVP R y e
UNIVERSITY FOR ADVANCED JHim EA AN
SINGAPORE INTELLIGENCE !:'i':ge!!?! VANCOUVER, CANADA

word(s)
“horse”,
Frozen Text e
Encoder (7) “dryer” — | Prompt |—> —>
Classification

For inference and training on base categories



演示者
演示文稿备注
We build our open-vocabulary detector on a two-stage model. We modify the classifier of the detector by projecting region features to word embedding space,  which we name as pseudo words. During inference and the training on base categories, we send the pseudo words to the text encoder for classification.
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 Start from region proposals
* Sample surrounding (neighboring) region boxes with equal box sizes
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Then we introduce the knowledge distillation on bag of regions. To form a bag of regions, we start from region proposals and randomly sample surrounding region boxes that have equal shapes.
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Here we illustrate how to represent the bag of regions for knowledge distillation. For the student embeddings, we add positional embeddings that encodes the region shapes and sizes to the pseudo words, concatenate them and send to the text encoder. 
For the teacher embeddings, we crop the image contents that enclose the bag of regions and send to the image encoder.
By aligning the student and teacher embeddings, the detector indirectly learns the pseudo words of individual regions.


B
Method

* Aligning Bag of Regions

InfoNCE
Loss

J

* Adopt contrastive learning
* Keep queues of embeddings to provide sufficient negative teacher-student

embedding pairs

Teacher
Embedding

Student
Embedding

f . 3 NANYANG S_LAB m JUNE18-22,2023§
fo

[ Update "'ﬁl

Y
m
=
i g
i
b
i
|

TECHNOLOGICAL .
% UNIVERSITY FOR ADVANCED ) ,ﬂ' CVP R‘.
sense time

VANCOUVER, CANADR

SINGAPORE INTELLIGENCE

Qucue of
Embeddings

Update
_—



演示者
演示文稿备注
Then we adopt a contrastive approach to align the student and teacher embeddings. And we keep queues of  student and teacher embeddings to provide sufficient negative pairs to facilitate the contrastive learning.
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Additionally, our approach can be applied to caption supervision, by taking text embeddings of image captions as the teacher embeddings.
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In the experiment part, we first show our benchmark results on the challenging COCO and LVIS datasets.
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Method Supervision Backbone Detector APl APSe APs,
ViLD [15] CLIP ResNet50-FPN FasterRCNN 276 595 512
OV-DETR [52] CLIP ResNet50 DeformableDETR | 294  61.0 527
BARON (Ours) CLIP ResNetS0-FPN FasterRCNN 340 0604 535
OVR-CNN [53] Caption ResNet50-C4 FasterRCNN 22.8 46.0 399
RegionCLIP [56] Caption ResNet50-C4 FasterRCNN 268 548 475
Detic [58] Caption ResNet50-C4 FasterRCNN 27.8 51.1 45.0
PB-OVD [13] Caption ResNet50-C4 FasterRCNN 30.8  46.1 421
VLDet [28] Caption ResNet50-C4 FasterRCNN 320 50.6 45.8
BARON (Ours) Caption ResNet50-C4 FasterRCNN 331 548 491
Rasheed ef al. [41]T | CLIP + Caption | ResNet50-C4 FasterRCNN 366 54.0 494
BARON (Ours)' CLIP + Caption | ResNet50-C4 FasterRCNN 427 549 517
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On open-vocabulary COCO benchmark, our approach achieves state-of-the-art performance under both CLIP supervision and caption supervision.
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Method Ensemble | Learned Prompt Object Detection Instance segmentation

AP, AP. AP, AP |AP,. AP. AP, AP
ViLD [15] - - 16.3 21.2 31.6 24.4|16.1 20.0 28.3 22.5
OV-DETR [52] - - - - - - 174 25.0 32.5 26.6
BARON (Ours) - - 17.3 256 31.0 263 (18.0 244 289 251
ViLD [15] v - 16.7 26.5 342 27.8|16.6 24.6 30.3 25.5
ViLD* [15] v - 174 275 319 275|16.8 25.6 28.5 25.2
BARON (Ours) v - 20.1 28.4 322 28.4|19.2 26.8 29.4 26.5
DetPro [10] v v 20.8 27.8 324 28419.8 25.6 289 259
BARON (Ours) v v 23.2 293 325 295(22.6 27.6 298 276
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On open-vocabulary LVIS benchmark, our approach consistently outperforms existing methods.
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 Transfer Results

Pascal VOC COCO Objects365

Method
o APso AP75; | AP APsy AP;5s AP, AP,, AP, | AP AP;y AP;s AP, AP,, AP,

Supervised [10] | 78.5 49.0 |46.5 67.6 509 27.1 67.6 77.7|25.6 38.6 280 160 28.1 36.7

ViLD* [15] 739 579 |34.1 523 365 21.6 389 46.1|11.5 17.8 123 42 11.1 178
BARON (Ours)* | 74.5 57.9 |36.3 56.1 39.3 254 395 482|132 20.0 140 4.8 12.7 20.1

DetPro [10] 74.6 579 1349 538 374 225 396 463 |12.1 188 129 45 115 18.6
BARON (Ours) | 76.0 58.2 |36.2 55.7 39.1 248 40.2 47.3|13.6 21.0 145 5.0 13.1 20.7
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When transferring the model trained on LVIS dataset to other datasets, our approach also remarkably outperforms existing methods.
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Finally, we display visualization results. In this page, we show some examples of bag of regions. Green boxes denote the region proposals and blue boxes are sampled neighbors (candidates). Areas exceeding image boundary are cropped out.
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Then we qualitatively compare of our approach and the individual-level baseline. We show the detection results, where red boxes are for the novel categories and blue for the base categories.  And we also visualize the feature map’s responses to the queried novel object categories. We find that our model generates responses at locations of novel categories while the individual-level baseline induces weaker, incomplete or diffused responses. We also notice that semantically related objects can respond to the queried object category.
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Lastly, we show that our model can also be used for image-based inference, where the queried objects are represented by embeddings of a references images, which are generated by CLIP’s image encoder.
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Thanks for your listening. Scan the quick response code to access the github webpage and we appreciate your stars.
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