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Behind the Scenes

A self-supervised method for volumetric reconstruction of a scene from a single image.
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camera frustum to volumetric density o.
Training Self-supervised from only (stereo) video data.
vs. Monocular Depth Prediction vs. Learnable NeRFs
e.g. Monodepth 21 e.g. PixeINeRF?
We can reason about occluded areas. We achieve better generalization.
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1Godard et al., Digging into Self-Supervised Monocular Depth Prediction, ICCV 2019
2Yu, et al. Pixelnerf: Neural radiance fields from one or few images, CVPR 2021



Volumetric Reconstruction on KITTI-360

Novel View Synthesis
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Model Architecture
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Model Architecture
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Model Architecture

a) Inferring a density field from Iy
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2. Color Sampling

1. High Capacity Encoder-Decoder
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i\ | —f— Sample feature from feature map & Sampling position after reprojection @ Sampling operation

1. Shift capacity from MLP to feature extractor

—> MLP can only reason about local geometry
— Encoder-Decoder has to capture entire scene
—> Better generalization

2. Sample color instead of the MLP predicting color

- Implicit field function becomes simpler
— Enforces multi-view consistency
—> More training stability, fewer artifacts




Self-Supervised Training

Available views during training

During training, multiple views are available:
* Oneview is considered the input image

* All views are partitioned into Loss and Render views

Left camera Right camera
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Self-Supervised Training

Available views during training

During training, multiple views are available:

* One view is considered the input image

* All views are partitioned into Loss and Render views

Loss views Render views

Predicted Density

Loss Target Color o
Reconstruction loss: L T N) B
* Perform volume rendering to reconstruct Loss views < e >
based on the predicted density ol W
o Lot Sampled Colors
* Sample color from Render views Render
* Use photometric consistency as supervision signal A




Self-Supervised Training

Learning Geometry in Occluded Regions

Traditional reprojection loss formulations do not give
training signals for areas occluded in the input image.
I L X Object 1
I

— Our density field allows reconstructing any frame from
any other frame

Object 2 —> We can reconstruct P in view I, by sampling colors from I3

Legend: I € Niogs 4 I€ Neender | Patch P — To minimize the loss, our network has to predict correct
geometry for P, even though P is occluded in |,

— This requires at least two extra views other than the
input view.



Datasets

Datasets
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KITTI? RealEstate10K3

KITTI-3601

1liao et al., KITTI-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d , TPAMI 2022

2 Geiger et al., Vision meets Robotics: The KITTI Dataset, IJRR 2013
3 Zhou et al., Stereo magnification: Learning view synthesis using multiplane images, SIGGRAPH 2018



Occupancy Estimation - KITT]

Birds-Eye View (dark = high density)

~

Input & Predicted Depth Ours

IMonodepth2: Godard et al., Digging into Self-Supervised Monocular Depth Prediction, ICCV 2019
2 pixelNeRF: Pixelnerf: Neural radiance fields from one or few images, CVPR 2021
3 MINE: Li et al., Mine: Towards continuous depth mpi with nerf for novel view synthesis, ICCV 2021



Occupancy Estimation - KITT]

Model Volum. Split AbsRel] RMSE|] a<1.257

PixeINeRF [57] v 0.130 5.134 0.845
Method Oaec T IEace T IEgec T EPC++ [29] X 0.128 5.585 0.831
Deptth [14] 0.94 n/a n/a MonoDepth2 [14] X 0.106 4.750 0.874
Do’ cm(14 091 06 0z PR X o oN s o

. + €p mn . . .

PixelNeRFT 7]~ 092 0.63 043 FeatDepth [14] X 0.099 4427  0.889
Ours (No S, F) 0.94 0.70 0.06 DevNet [60] ) 0.095 4.365 0.895
Ours (No F) 094 071 0.09 Ours v 0.102 4407 0882
Ours 0.94 0.77 0.43

MINE [23] e Tuls. [49] 0.137 6.592 0.839

Ours v . 0.132 6.104 0.873
Occupancy Estimation against aggregated Depth prediction against state-of-the-art monocular
LiDAR Scans form multiple timesteps. depth prediction methods.

EPC++: Luo et al., Every pixel counts++: Joint learning of geometry and motion with 3d holistic understanding, TPAMI 2019
PackNet: Guizilini et al., 3d packing for self-supervised monocular depth estimation, CVPR 2020

IMonodepth2: Godard et al., Digging into Self-Supervised Monocular Depth Prediction, ICCV 2019 DepthHint: Watson et al., Self-supervised monocular depth hints, ICCV 2019

2 pixelNeRF: Pixelnerf: Neural radiance fields from one or few images, CVPR 2021 FeatDepth: Shu et al., Feature-metric loss for self-supervised learning of depth and egomotion, ECCV 2020

3 MINE: Li et al., Mine: Towards continuous depth mpi with nerf for novel view synthesis, ICCV 2021 DevNet: Zhou et al., Devnet: Self-supervised monocular depth learning via density volume construction, ECCV 2022



Qualitative Results — KITTI-360

Depth

Inference per frame on test sequences from KITTI-360. We show smooth transitions between expected ray termination depth,
novel view synthesis, and birds-eye view.



KITT| & RealEstate10K

Novel View Synthesis —
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Behind the Scenes
Density Fields for Single View Reconstruction

v’ Volumetric reconstruction from a single image, even in occluded areas.

v" New density field formulation and improved architecture enable
training on challenging datasets and improve generalization.

v' A self-supervised training scheme from only (stereo) video.

For code, pretrained models and more, = -
please visit our project page at fwmb.github.io/bts
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