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Overview

Progressive Random Convolution for Single Domain Generalization

• Deep neural networks often struggle to generalize to out-of-distribution data.

• We propose a simple and lightweight image augmentation technique based on Progressive Random Convolutions.

<Augmented set: 𝑿𝒂𝒖𝒈>

<Test set: B>

32.5%

<Test set: C>

42.3%

Classification accuracy 
when learning with 𝑿𝒕𝒓𝒂𝒊𝒏 & 𝑿𝒂𝒖𝒈

98.6+0.7% 32.5+37.2% 42.3+37.5%

Out-of-distribution data

<Training set: 𝑿𝒕𝒓𝒂𝒊𝒏> <Test set: A>

Classification accuracy 
when learning with 𝑿𝒕𝒓𝒂𝒊𝒏

98.6%

Deep 
Neural Network 

Progressive Random 

Convolutions (Pro-RandConv)
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Motivation

Progressive Random Convolution for Single Domain Generalization

Xu, Zhenlin, et al. "Robust and Generalizable Visual Representation Learning via Random Convolutions." ICLR’21

Random Convolutions (ICLR’21)

• A single convolution layer (randomly initialized)
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Conv k: 𝑤 ∈ ℝ𝑘×𝑘×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

𝑋 𝑋′

RandConv (ICLR’21)

Different

kernel size
𝑘 ∈ {1, 3, 5, . . }

Conv 1

Augmented image
[𝐶𝑜𝑢𝑡 × 32 × 32]

Conv 3 Conv 5 Conv 7

Randomly sampled from
Gaussian distribution

𝑤 ~𝑁 0,
1

𝑘2𝐶𝑖𝑛

➔ Structural limitations

Properties

• Similar global shapes

• Random local textures

Overview Motivation Proposed method Algorithm Experiments

Input image
[𝐶𝑖𝑛 × 32 × 32]
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(c) Performance with changing kernel size (𝑘) or number of repetitions (𝐿)

Theoretical receptive field increases

k=3 k=5 k=7 k=11 k=13 k=15 k=17

L=1 L=2 L=3 L=4 L=5 L=6 L=7

Kernel size:

Repetitions:

Motivation 

Progressive Random Convolution for Single Domain Generalization

Random Convolutions (ICLR’21)

• Structural limitations (Single convolution layer): the problems of limited diversity and semantic distortion
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(b) Progressive approach (multi-layer)(a) RandConv (single-layer)

Different weight Same weight

Same weight

𝐿 layers
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𝐿 layers 𝐿 layers

Conv k: 𝑤 ∈ ℝ𝑘×𝑘×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

Randomly initialized each mini-batch

𝑋 𝑋′

Different
kernel size

𝑘 ∈ {1, 3, 5, . . }

Limitations

• Artificial patterns

• Semantic distortion
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Effective Receptive Fields (ERF): how much each input pixel can influence one output pixel
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Luo, Wenjie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NeurIPS’16
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Theoretical
receptive fields

𝟏𝟏 × 𝟏𝟏

Theoretical
receptive fields

𝟐𝟏 × 𝟐𝟏

Theoretical
receptive fields

𝟒𝟏 × 𝟒𝟏
𝐶
𝑜
𝑛
𝑣
3

𝑘𝟓
𝐶
𝑜
𝑛
𝑣
3

𝑘𝟏
𝟎

𝐶
𝑜
𝑛
𝑣
3

𝑘𝟐
𝟎

Trial 1 Trial 2 Trial 3

Progressive (different weights)
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Trial 1 Trial 2 Trial 3

Progressive (same weights)
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Same weight

𝐿 layers

Trial 1 Trial 2 Trial 3

{𝐶
𝑜
𝑛
𝑣
𝟏
𝟏
}

{𝐶
𝑜
𝑛
𝑣
𝟐
𝟏
}

{𝐶
𝑜
𝑛
𝑣
𝟒
𝟏
}

RandConv (ICLR’21)
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Different
kernel size

𝑘 ∈ {1, 3, 5, . . }

The Effective Receptive Field [*] 

occupies only a fraction of the full 

theoretical receptive field.
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Proposed method

Progressive Random Convolution for Single Domain Generalization

(b) Examples of images augmented by the proposed Pro-RandConv(a) Examples of images augmented by RandConv

𝑘=1 𝑘=3 𝑘=5 𝑘=7 𝑘=9 𝑘=11 𝑘=13 𝑘=15 𝑘=17 𝑘=19

Increase kernel size

𝐿=1 𝐿=2 𝐿=3 𝐿=4 𝐿=5 𝐿=6 𝐿=7 𝐿=8 𝐿=9 𝐿=10

Increase the number of repetitions

Mini-

batch1

Mini-

batch2

Mini-

batch3

Mini-

batch1

Mini-

batch2

Mini-

batch3

Main contribution 1: Progressive approach

RandConv (ICLR’21) Pro-RandConv (Ours)
Alleviate semantic
distortion issues

Fine-grained control
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Theoretical
receptive fields

𝟏𝟏 × 𝟏𝟏

Trial 1 Trial 2 Trial 3

{𝐶
𝑜
𝑛
𝑣
𝟏
𝟏
}

{𝐶
𝑜
𝑛
𝑣
𝟐
𝟏
}

{𝐶
𝑜
𝑛
𝑣
𝟒
𝟏
}

𝐶
𝑜
𝑛
𝑣
3

𝑘𝟓
𝐶
𝑜
𝑛
𝑣
3

𝑘𝟏
𝟎

𝐶
𝑜
𝑛
𝑣
3

𝑘𝟐
𝟎

Trial 1 Trial 2 Trial 3

𝐶
𝑜
𝑛
𝑣
3

𝟓
𝐶
𝑜
𝑛
𝑣
3

𝟏
𝟎

𝐶
𝑜
𝑛
𝑣
3

𝟐
𝟎

Trial 1 Trial 2 Trial 3

Theoretical
receptive fields

𝟐𝟏 × 𝟐𝟏

Theoretical
receptive fields

𝟒𝟏 × 𝟒𝟏

RandConv (ICLR’21) Progressive (different weights) Progressive (same weights)
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𝐿 layers
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Different
kernel size

𝑘 ∈ {1, 3, 5, . . }

The Effective Receptive Field [*] 

occupies only a fraction of the full 

theoretical receptive field.

• Different 𝑤: irregular patterns

• Same 𝑤: more regular patterns

(Similar to Gaussian, Gabor, …)

Gaussian-like Gabor-like
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Proposed method

Progressive Random Convolution for Single Domain Generalization

(c) Performance with changing kernel size (𝑘) or number of repetitions (𝐿)
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(b) Progressive approach (multi-layer)(a) RandConv (single-layer)

Different weight Same weight

Same weight

𝐿 layers
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𝐿 layers 𝐿 layers

Conv k: 𝑤 ∈ ℝ𝑘×𝑘×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

Randomly initialized each mini-batch

𝑋 𝑋′

Different
kernel size

𝑘 ∈ {1, 3, 5, . . }

Theoretical receptive field increases

k=3 k=5 k=7 k=11 k=13 k=15 k=17

L=1 L=2 L=3 L=4 L=5 L=6 L=7

Kernel size:

Repetitions:

More effective

Main contribution 1: Progressive approach

• RandConv (ICLR’21) < Progressive approach with different weights < Progressive approach with the same weights (better)
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)

• Texture diversification by random deformable convolution: a generalized version of random convolutions 

Distortion scale of deformable offsets

𝜎Δ = 0.2

𝜎Δ = 0.1

𝜎Δ → 0

𝜎Δ = 0.5

𝜎Δ = 1.0

Increase the number of repetitions

𝑤: Convolution weights ➔ w~𝑁(0, 𝜎w
2 )

∆𝑝: Deformable offsets ➔ 𝛥𝑝 ~ 𝑁(0, 𝜎𝛥
2)

Relaxing constraints

Overview Motivation Proposed method Algorithm Experiments
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)

• Contrast diversification by random style transfer (AdaIN): the role of random gamma correction 

𝜎𝛾 = 0.50

𝜎𝛾 = 0.25

𝜎𝛾 = 1.00

𝜎𝛾 = 2.50

𝜎𝛾 = 0.10

Affine transformation (𝛾)

Increase the number of repetitions

𝜎𝛽 = 0.50

𝜎𝛽 = 1.00

𝜎𝛽 = 2.50

𝜎𝛽 = 0.25

𝜎𝛽 = 0.10

Affine transformation (𝛽)

Increase the number of repetitions

𝛾: Affine transformation ➔ 𝛾 ~ 𝑁(0, 𝜎𝛾
2)

𝛽: Affine transformation ➔ 𝛽 ~ 𝑁(0, 𝜎𝛽
2)

Overview Motivation Proposed method Algorithm Experiments



12

(c) Performance with changing kernel size (𝑘) or number of repetitions (𝐿)
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(b) Progressive approach (multi-layer)(a) RandConv (single-layer)

Different weight Same weight

Same weight

𝐿 layers
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𝐿 layers 𝐿 layers

Conv k: 𝑤 ∈ ℝ𝑘×𝑘×𝐶𝑖𝑛×𝐶𝑜𝑢𝑡

Randomly initialized each mini-batch

𝑋 𝑋′

Different
kernel size

𝑘 ∈ {1, 3, 5, . . }

Theoretical receptive field increases

k=3 k=5 k=7 k=11 k=13 k=15 k=17

L=1 L=2 L=3 L=4 L=5 L=6 L=7

Kernel size:

Repetitions:

Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)

• RandConv (ICLR’21) < Basic design (Different weights) < Basic design (Same weights) < Advanced design (Same weights)
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Algorithm and training pipeline

Progressive Random Convolution for Single Domain Generalization
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𝛾

Random Convolution (RC) Block

𝑋𝑙 𝑋𝑙+1

𝑤 Δ𝑝 𝛾 𝛽 : initialized randomly

𝑋𝑙 ∈ [−1, 1] 𝑋𝑙+1 ∈ [−1, 1]

R
C

  
B

lo
c
k

R
C

  
B

lo
c
k

R
C

  
B

lo
c
k

R
C

  
B

lo
c
k

…

Progressive Augmentation
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Experimental results: Digit recognition

Progressive Random Convolution for Single Domain Generalization

• Dataset: Digits (MNIST ➔ SVHN, MNIST-M, SYN, USPS) [Model: LeNet]

T
ra

in
T

e
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t

<Digit recognition>

SVHN

MNIST MNIST (Augmented)

Averaged accuracy on test domains 

52.0% ➔ 81.4%

MNIST-M SYN USPS
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Experimental results: Object recognition

Progressive Random Convolution for Single Domain Generalization

• Dataset: PACS (4 domains: 1 domain for training, 3 domains for test) [Model: ResNet18]
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<Object recognition>

Art

Photo Photo (Augmented)

Averaged accuracy on test domains 

56.3% ➔ 62.9%

Cartoon Sketch
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Experimental results: Semantic segmentation

Progressive Random Convolution for Single Domain Generalization

• Dataset: GTAV ➔ Cityscapes [Model: DeepLabV3+]

GT

[Cityscapes]

RandConv

[ICLR’21]

(mIoU 35.38%) 

RobustNet

[CVPR’21]

(mIoU 39.72%)

Ours 

[CVPR’23]

(mIoU 42.36%)

Unseen images

[Cityscapes]

Baseline

[DeepLabV3]

(mIoU 35.10%)
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