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Overview P

Overview

Progressive Random Convolution for Single Domain Generalization

» Deep neural networks often struggle to generalize to out-of-distribution data.
+ We propose a simple and lightweight image augmentation technique based on Progressive Random Convolutions.

Out-of-distribution data

Deep
Neural Network

g. 08

Progressive Random <Test set: A> <Test set: B> <Test set: C>
Convolutions (Pro-RandConv)

Classification accuracy 98.6% 32 59, 49 3%
when learning with X4, ' - :

Classification accuracy 98.6+0.7% 32.5+37.2%  42.3+37.5%
when learning with X;;.4in & X4

<Augmented set: X4, 4>
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Motivation

Progressive Random Convolution for Single Domain Generalization

Random Convolutions (ICLR’21)
» A single convolution layer (randomly initialized) = Structural limitations

RandConv (ICLR’21) ,
. _ Properties
Input image Different preen Augmented image » Similar global shapes
[Cin X 32 X 32] N [Coue X 32 X 32] « Random local textures
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Xu, Zhenlin, et al. "Robust and Generalizable Visual Representation Learning via Random Convolutions." ICLR’21
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Motivation

Progressive Random Convolution for Single Domain Generalization

Random Convolutions (ICLR’21)
» Structural limitations (Single convolution layer): the problems of limited diversity and semantic distortion

Diﬂ’ereqt ______ Different weight Same weight Increase kernel size
kernel size © ol 2] - [ >
k €{1,3,5,.} g EHS S k=1 k=3 k=5 k=7 k=9 k=11 k=13 k=15 k=17 k=19

(8] (8] (8] (8] . i R 3 .
J-.- J-.- Mini- '
!
X X L layers L layers batchl
Same weight o
Mini-
I batch2
Conv k:w € R*kxCinxCoug Mini:
Randomly initialized each mini-batch L layers

(a) RandConv (single-layer) (b) Progressive approach (multi-layer) batch3

Limitations
* Artificial patterns
*  Semantic distortion
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Effective Receptive Fields (ERF): how much each input pixel can influence one output pixel
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Luo, Wenijie, et al. "Understanding the effective receptive field in deep convolutional neural networks." NeurlPS’16
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Theoretical
receptive fields
11 x 11

Theoretical
receptive fields
21 x21

Theoretical
receptive fields
41 x 41

{Conv21} {Conv11}

{Conv41}

Trial 1

Trial 2

Trial 1

Trial 3

{Conv?’},sc
{Conv3}

{Conv3};°
{Conv3}

"'ﬂ

{Conv3}s°
{Conv3}

) Progressive (different weights)

The Effective Receptive Field [*]
occupies only a fraction of the full
theoretical receptive field.

Different weight

Different
kernel size
k €{1,3,5,..}

Trial 2 Trial 3

-

-

Same weight

L layers
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Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Mini-
batchl
Mini-
batch?2
Mini-
batch3

Increase kernel size

k=1 k=3 k=5 k=7 k=9 k11k13k15kl7k19

(a) Examples of images augmented by RandConv

RandConv (ICLR’21)

<« Fine-grained control

Increase the number of repetitions

L=1 L=2 L3 L4 L=5 L=6 L=7 L=8 L=9 LlO

Mini-
batchl
Mini-
batch2
Mini-
batch3

(b) Examples of images augmented by the proposed Pro-RandConv

Alleviate semantic
Pro-RandConv (Ours) istortion issues




Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach

Theoretical
receptive fields
11 x 11

Theoretical
receptive fields
21 x21

Theoretical
receptive fields
41 x 41

{Conv11}

{Conv21}

{Conv41}

Trial 1

Trial 2

)

Different
kernel size
k €{1,3,5,..}

{Conv3};° {Conv3}}

{Conv3}s°

Trial 1 Trial 2

=

Trial 3 Trial 1

{Conv3} {Conv3}

{Conv3}

Progressive (different weights)

Different weight

Different w: irregular patterns |

Trial 2

Trial 3




Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 1: Progressive approach
+ RandConv (ICLR’21) < Progressive approach with different weights <

Different Different weight Same weight

kernel size
k €{1,3,5,..}

RandConv [ Progressive (Different) Progressive (Same)
Progressive (Same) + Random convolution block

oo
o

L layers L layers

X X'
Same weight

8 I | | | |The0ret|ca|ecept|vef|e|||ncreases
I ~ 55

t accuracy on Digits

D O N N
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Convk-w € RFKXCinxCout lKerne_I _size:k =3 k=5 k=7 k=11 k=13 k=15 k=17
Randomly initialized each mini-batch L layers @ 8 Repetitions: | =1 L=2 L=3 L=4 L=5 L=6 L=7

(a) RandConv (single-layer) (b) Progressive approach (multi-layer) (c) Performance with changing kernel size (k) or number of repetitions (L)



Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)
« Texture diversification by random deformable convolution: a generalized version of random convolutions

w: Convolution weights = w ~ N (0, 032)
X141 Ap: Deformable offsets = 4p ~ N(0,02)

Xiy1 €[-1,1]

w || Ap : initialized randomly

W I
X
Ap

X e[-1,1] L_|

-
=

-
v

\ 4

| Affine transform |
|
Tanh
Y

Deform conv |
|
| Standardization |

Random convolution block Increase the number of repetitions

Relaxing constraints «

) Random offsets
Reference po\mt Fixed offsets for each reference point

] EAuEEE I ]
20 15 [ ] []

SIS CHRERs :

(a) Basic random convolution (b) Random deformable convolution




Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)
Contrast diversification by random style transfer (AdalN): the role of random gamma correction

W i
X X141
Ap

X, e [-1,1] L 1L Xi41 € [-1,1]

Increase the number of repetitions

: initialized randomly

Tanh
A J

A 4

g H>

| Deformconv | [<
|

| Standardization | [

Affine transform |

Affine transformation (y)

Random convolution block »
Increase the number of repetitions

y: Affine transformation = y ~ N(0, oy

B: Affine transformation = g ~ N(O, a[%)

Affine transformation (B)



Proposed method

Progressive Random Convolution for Single Domain Generalization

Main contribution 2: Random convolution blocks (Advanced design)
+ RandConv (ICLR’21) < Basic design (Different weights) < < Advanced design (Same weights)

Same weight

£
o

L layers 7
Same weight 6

~ 6 | | | | | | |
& 55 THReoretical recgptive field in eases
@ Kernel size: k=3 k=5 k=7 k=11 k=13 k=15 k=17

L layers @ @ Repetitions: L=1 L=2 L=3 L=4 L=5 L=6 L=7
(b) Progressive approach (multi-layer) (c) Performance with changing kernel size (k) or number of repetitions (L)
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Algorithm and training pipeline

Progressive Random Convolution for Single Domain Generalization

Algorithm 1 Pro-RandConv

N o
J\b

Input: Source domain § = {x,,. v, },,%;
Output: Trained network f(-)

I: Initialize network parameters ¢
2 fort=1to71,,,, do

3:

i B AN

Initialize a random convolution block G:

w~ N(0,02) // Convolution weights
Ap ~ N(0,0%) // Deformable offsets
v~ N(0.02)  // Affine transformation (gamma)
B~ N(O, O’%) // Affine transformation (beta)
Progressive augmentation:

X~S /I Sample a mini-batch
Xp +— X // Set an initial value

L~U\{1,2,...,Linaz}) // Repetition numbers

for [ = 1to L do
X =G(X;_1) /I Apply Pro-RandConv

Training a network:
¢+ & — @V Ly (Xo, X1 ;@) 1/ Network update

S

>
]

<

E’] initialized randomly

4 >

Ap B 4K

| Affine transform |
|
Tanh
v
L'QI
+
=

Deform conv
|
| Standardization |

Random Convolution (RC) Block

X X
O O
9 o)
m m
O O
o o

RC Block
RC Block

Progressive Augmentation
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Experimental results: Digit recognition

Progressive Random Convolution for Single Domain Generalization

+ Dataset: Digits (MNIST = SVHN, MNIST-M, SYN, USPS) [Model: LeNet]

Category Paper Methods MNIST MNIST MNIST MNIST Average| Gap <Dlglt recogn|t|0n>
— SVHN |- MNIST-M| — SYN — USPS
Baseline - Baseline (ERM) 32.52 54.92 42.34 78.21 52.00 | -29.35
- Color jitter* 36.04 57.56 43.94 77.76 53.83 | -27.52
e Tes - Grayscale* 32.92 55.44 42.38 78.22 5224 | -29.11
Augmentation - Pespective* 33.63 43.86 40.92 69.12 46.88 | -34.47 £
- Rotate* 31.99 54.86 38.22 69.54 48.65 | -32.70 ©
Automated Data CVPR'19 |AutoAugment 45.23 60.53 64.52 80.62 62.72 | -18.63 =
Augmentation CVPRW'20 |RandAugment 54.77 74.05 59.60 77.33 66.44 | -14.91
NeurlPS'18 | ADA 3551 60.41 45.32 77.26 5462 | -26.73
Adversarial Data CVPR20 |M-ADA 42.55 67.94 48.95 78.53 5949 | -21.86
Augmentation or NeurlPS'20 | ME-ADA 42 .56 63.27 50.39 81.04 59.32 | -22.03
Learnable Generator [\ccy21  |L2D 62.86 87.30 63.72 83.97 7446 | -6.89
CVPR'21 |PDEN 62.21 82.20 69.39 85.26 7477 | -6.58
ICCV'17 |CCSA 25.89 49.29 37.31 83.72 49.05 | -32.30
Domain CVPR'19 |d-SNE 26.22 50.98 37.83 93.16 52.05 | -29.30 17
Generalization CVPR'19 |JiGen 33.80 57.80 43.79 77.15 5314 | -28.21 IE
CVPR'22 |MetaCNN 66.50 88.27 70.66 89.64 78.76 | -2.59 SVHN MNIST-M SYN
ICLR'21 RandConv* 61.66 84.53 67.87 85.31 74.84 | -6.51
Image Ours Progressive (Diff) 60.73 78.47 71.46 88.20 7472 | -6.63 Averaged accuracy on test domains
Randomization :
(Non-trainable) Ours Progressive (Same) 65.67 76.26 77.13 93.98 78.26 | -3.09 0 0
Ours Pro-RandConv 69.67 82.30 79.77 93.67 81.35 52 . O /0 9 8 1 4 /O

*denote reproduced results
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Experimental results: Object recognition

Progressive Random Convolution for Single Domain Generalization

» Dataset: PACS (4 domains: 1 domain for training, 3 domains for test) [Model: ResNet18]
<Obiject recognition>

Art (A) Cartoon (C)| Photo (P) | Sketch (S)
Category Paper Methods ., CPS \ APS ~, ACS ., ACP Average| Gap
Baseline - Baseline (ERM) 74.64 73.36 56.31 48.27 63.15 | -5.73 =
- Color jitter* 75.94 76.56 59.27 50.24 65.50 | -3.38 IC_E
LT - Grayscale* 74.29 75.75 58.96 47 67 64.17 | -4.71
Augmentation - Pespective* 72.29 70.17 59.99 43.79 61.31 | -7.57
- Rotate* 73.47 71.06 56.95 46.61 62.02 | -6.86
et el CVPR'19 |AutoAugment* 76.48 77.09 60.99 52.46 66.76 | -2.12
Augmentation CVPRW'20 |[RandAugment* 76.76 78.00 62.09 56.40 68.31 | -0.57
NeurlPS'18 [ADA 72.43 71.97 4463 45.73 58.70 | -10.18 p
Adversarial Data CVPR21 |SagNet 73.20 75.67 48.53 50.07 | 61.90 | -6.98 L % @R
Augmentation or : = o il r,-jl
Learnable Generator |CVPR22 | GeoTexAug 72.07 78.70 49.07 59.97 65.00 | -3.88 o = )| i}
IcCV21  [L2D 76.91 77.88 52.29 53.66 65.18 | -3.70 O }8@ ﬁ“\
ICLR'21  |RandConv* 76.93 76.47 62.46 54.13 67.50 | -1.38 = — ® .
Image Ours Progressive (Diff) 75.46 75.39 60.02 55.02 | 66.47 | -2.41 q Cartoon Sketch
Randomization - )
Ours Pro-RandConv 76.98 78.54 62.89 57.11 68.88

* denote reproduced results 5 6 . 3 % 9 62 . 9 %
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Experimental results: Semantic segmentation

Progressive Random Convolution for Single Domain Generalization

» Dataset: GTAV = Cityscapes [Model: DeepLabV3+]

_ Baseline RandConv RobustNet Ours
GT Unseen images [DeepLabV3] [ICLR’21] [CVPR’21] [CVPR’23]
[Cityscapes] [Cityscapes] (mloU 35.10%) (mloU 35.38%) (mIoU 39.72%) (mloU 42.36%)
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