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OneFormer: Preview
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Introduction



Image Segmentation

e Image Segmentation is the task of grouping pixels into multiple segments.
e The groupingcan be:

o  Semantic: One binary segment for each category irrespective of shape (e.g. road, sky, etc.).

o Instance: Distinct segments for each object with well-defined shape (e.g. car, person, etc.).

o  Panoptic: An amorphous segment for amorphous background regions (labeled “stuff”) and distinct segments for
objects with well-defined shape (labeled “thing”).
Input Image Semantic Segmentation Instance Segmentation Panoptic Segmentation

Jonathan Long et al., Fully convolutional networks for semantic segmentation. CVPR 2015
Kaiming He etal., Mask R-CNN. ICCV 2017

Alexander Kirillov et al., Panoptic Segmentation. CVPR 2019



Goal

Develop a truly universal image segmentation framework that when trained only once outperforms the individually trained models on all

three image segmentation tasks.
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Methodology



OneFormer

° Multi-task Model
° Task-conditioned Architecture

e  Outperforms existing frameworks across semantic, instance, and panoptic segmentation tasks, despite the latter need to be trained

separately on each task using multiple times of the resources.
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OneFormer v/s Mask2Former

Mask2Former

e | ZUniversal Architecture.

e X Multiple Tasks.

e )X Single Set of Annotations.
e X Single Model.

e )X Single Training Process.

e | /SOTA Performance.
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Bowen Cheng et al., Masked-attention mask transformer for universal image segmentation. CVPR 2022




OneFormer v/s Mask2Former

1 architecture, 1 model & 1 dataset
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Task-Guided Joint Training

e Uniformly sample task (probability p) for the GT label.

e Derive all GT labels from corresponding panoptic annotations during joint training.

e Condition our architecture on the task using a “ the task is a {task}” input.

e The GT for a sample depends on the task domain.

o  We use a query-text contrastive loss for the model to learn inter-task distinctions.

e Text Mapper can be dropped during inference.
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Input Text List Generation
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Results: SOTA on major benchmark datasets

OneFormer sets a new state-of-the-art performance on all three segmentation tasks compared with methods using

the standard Swin-L backbone, and improves even more with new DiNAT backbone.

ADE20K

Semantic

Instance Panoptic

w

573 349
487

Universal Architecture, Model and Dataset
[ OneFormer (swin-) [0 OneFormer (DNAT-L)
Panoptic Architecture BUT Specialized Models and Datasets
[ Mask2Former-Semantic (swin-L)

[ Mask2Former-Instance (Swin-L)

[ Mask2Former-Panoptic (swin-L)

Cityscapes
Semantic Instance Panoptic
- -
84.3 84.4 45.6 45.6

HEFn

Universal Architecture, Model and Dataset
[ OneFormer (swin-)  [EZZ000] OneFormer (DINAT-L)
Panoptic Architecture BUT Specialized Models and Datasets
[ Mask2Former-Semantic (swin-L)
[ Mask2Former-Instance (Swin-L)

"1 Mask2Former-Panoptic (swin-L)

Ze Liu et al, Swin Transformer: Hierarchical Vision Transformer using Shifted Windows, ICCV 2021
Bowen Cheng et al., Masked-attention mask transformer for universal image segmentation. CVPR 2022
Hassani et al, . Dilated Neighborhood Attention Transformer, arXiv 2022
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Results: Task-Dynamic OneFormer

Panoptic
Inference

Instance
Inference

Semantic
Inference

Task Token Input | PQ PQ™  PQS | AP mloU

67.2 61.0 ] 453 83.0
25.6 60.8 0.0 45.6 6.3
56.9 36.2 119 27.2 83.0

the task is panoptic
the task is instance
the task is semantic

Table V. Quantitative Analysis on Task Dynamic Nature of
OneFormer. Our OneFormer is sensitive to the input task to-
ken value. We report results with Swin-L' OneFormer on the
Cityscapes [14] val set. The numbers in pink denote results on
secondary task metrics.

task = "panoptic" task = "instance" task = "semantic"

Task Token Input | PQ PQ™  PQS | AP mloU

the task is panoptic 493 49.6 50.2 35.8 57.0
the task is instance 33.1 48.8 1.3 359 26.4
the task is semantic 40.4 355 50.2 253 57.0

Table 8. Ablation on Task Token Input. Our OneFormer is sen-
sitive to the input task token value. We report results with Swin-L'
OneFormer on the ADE20K [15] val set. The numbers in pink de-
note results on secondary task metrics.

task = "panoptic" task = "instance" task = "semantic"

Panoptic
Inference

Instance
Inference

Semantic
Inference
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Results: Individual Training

training strategy | method PQ AP mloU
Panoptic Trainin Mask2Former [12] 40.7 252 45.6
P & OneFormer (ours) 41.4 (+0.7) 27.0 (+1.8) 46.1 (+0.5)
Inst Trainin Mask2Former [12] — 26.4 —
e OneFormer (ours) — 26.7 (+0.3) —
Semantic Traini Mask2Former [12] — — 47.2
CnanEe;.Tamng OneFormer (ours) J— —_ 47.3 (+0.1)
Yoint Trainin Mask2Former' [12] 40.8 25.7 46.6
& OneFormer (ours) 41.9 (+1.1) 27.3 (+1.6) 47.3 (+0.7)

Table IV. Comparison between Individual and Joint Training. Unlike Mask2Former [12] which shows large variance in performance
among the different training strategies, OneFormer performs fairly well under all training strategies and outperforms Mask2Former [12].
We train all models with R50 [24] backbone on the ADE20K [15] dataset for 160k iterations. T We retrain our own Mask2Former [12]

using the joint training strategy.
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Conclusion

e Presented OneFormer, a new multi-task universal image segmentation framework with task-guided

queries.

e Our jointly trained single OneFormer model outperforms the individually trained specialized

Mask2Former models, the previous single-architecture state of the art, on all three segmentation tasks.

e OneFormer cuts training time, weight storage, and inference hosting requirements down to a third.

e Makesimage segmentation more accessible

e We believe OneFormer is a significant step towards making image segmentation more universal and

accessible.
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https://github.com/SHI-Labs/OneFormer
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https://github.com/SHI-Labs/OneFormer
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