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Humans understand many notions of ‘similarity’, and choose one for a given task 
However, most image representations are fixed 
We present a way to train and evaluate models which can adapt to different notions of similarity

Conditional Image Similarity
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• Four conditional retrieval tasks for zero-shot evaluation

The GeneCIS Benchmark
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• We automatically (scalably) mine training data from image-caption datasets

Method

horse (subj.) → on (pred.) → meadow (obj.)

horse (subj.) → on (pred.) → canvas (obj.)

“on canvas”
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2. Extract relationships

painting of a brown horse on a canvas, 
with a black tail and upright posture 


Relationships: (‘Subject’  'Predicate’  
'Object’) 

1: painting (subj.) → of (pred.) → horse (obj.)

K: horse (subj.) → on (pred.) → canvas (obj.) 

→ →

Entities: 
painting, horse, 

canvas, tail, posture Text-scene-
graph


young swimmer in a 

swimming pool


painting of a brown horse on a canvas, 
with a black tail and upright posture 


a golden crown on the fencehorses grazing on a meadow


1. Image-Caption Data
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Key Challenge: The set of possible conditions is infinite 
How do we train and evaluate such models? 
Prior work focusses on constrained domains like fashion or birds [1, 2]

Conditional Image Similarity

Condition

[1] Effectively Leveraging Attributes for Image Similarity, Mishra et. al, ICCV 2021 
[2] Conditional Similarity Networks, Veit et al., CVPR 2017
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Solution: Evaluate zero-shot on an open-set of conditions 
Models which perform well on a range of conditions understand general conditional similarity 
Consider conditions along two axes

Conditional Image Similarity

Condition

With the same bridge

With a black car

With the same car

With the same bridge

With a black car

With the same car

ObjectsAttributes

Focus

Change



7

• GeneCIS contains four conditional retrieval tasks for zero-shot evaluation 

• Dataset is constructed from COCO and VAW (Visual Genome) 

• 2k samples per task and a long tail of conditions. Full details in the paper.

GeneCIS
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• Inputs: (i) Reference Image; (ii) Conditioning Text; (iii) Gallery of Target Images 

• Outputs: Best matching gallery image (one correct answer) 

• Distractors in gallery prevent shortcut solutions

GeneCIS: Change an Attribute
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horse (subj.) → on (pred.) → meadow (obj.)

horse (subj.) → on (pred.) → canvas (obj.)

“on canvas”

3. Construct triplets: (IR, IT, c)

Shared subject 
Different objects


Condition: 

Target Pred. 

+


Target Obj.

IR

IT c

• Key challenge: Open-set of similarity conditions.  

• Impossible to get exhaustively annotated training data 

• Solution: Mine training data from image-caption datasets (Conceptual Captions 3M, CC3M) 

• Collect millions triplets of (Reference Image, Target Image, Condition)

Method
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• We now have millions of training triplets (we mine 1.6M triplets) 

• Embed images and text with CLIP-initialized encoders 

• Condition reference image features on text condition with ‘Combiner’ module [1] 

• Train contrastively

Method

[1] Conditioned and Composed Image Retrieval Combining and Partially Fine-Tuning CLIP-Based Features, Baldrati et al.,CVPRW 2022 
https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-a.svg
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2. Extract relationships

painting of a brown horse on a canvas, with 
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2. Extract relationships

painting of a brown horse on a canvas, with 
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Results

CLIP-Only Baselines



Results

Training with manual 
supervision from CIRR [1] 

Dataset of 30k triplets 

[1] Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models, Liu et. al, ICCV 2021 



Results

Ours trained on 1.6M 
automatically curated triplets



Further Analysis
• Zero-shot evaluation of our model outperforms many supervised baselines on similar benchmarks 

• Our model gets state-of-the-art on MIT-States, despite zero-shot evaluation

CIRR MIT-States



Further Analysis

• GeneCIS performance is only weakly correlated with ImageNet accuracy of backbone 

• In contrast to common vision tasks like detection and segmentation 

• GeneCIS probes an important but orthogonal visual capability to most benchmarks
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Thank you for listening
Email: 

sagar@robots.ox.ac.uk

Project page (+QR Link): 
https://sgvaze.github.io/genecis/


