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Conditional Image Similarity

Humans understand many notions of ‘similarity’, and choose one for a given task
However, most image representations are fixed
We present a way to train and evaluate models which can adapt to different notions of similarity




The GeneCIlS Benchmark

e Four conditional retrieval tasks for zero-shot evaluation
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Method

e \We automatically (scalably) mine training data from image-caption datasets

1. Image-Caption Data

( young swimmer in a

swimming pool

horses grazing on a meadow

painting of a brown horse on a canveg
with a black tail and upright posture

2. Extract relationships

Text-scene-
graph

~

painting of a brown horse on a canvas,
with a black tail and upright posture

Entities:
painting, horse,
canvas, tail, posture

Relationships: (‘Subject’ — 'Predicate’ —
'Object’)
1: painting (subj.) — of (pred.) = horse (obj.)
K: horse (subj.) = on (pred.) @ canvas (obj.)

3. Construct triplets: (IX, I, ¢)
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Shared subject
Different objects

Condition:

Target Pred.
+
Target Ob;.

|

AN
/

horse (subj.) = on (pred.) — canvas (obj.)

_J

C

~

C “on canvas” )

_J




Conditional Image Similarity

Key Challenge: The set of possible conditions is infinite
How do we train and evaluate such models?
Prior work focusses on constrained domains like fashion or birds [1, 2]
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[1] Effectively Leveraging Attributes for Image Similarity, Mishra et. al, ICCV 2021
[2] Conditional Similarity Networks, Veit et al., CVPR 2017



Conditional Image Similarity

Solution: Evaluate zero-shot on an open-set of conditions
Models which perform well on a range of conditions understand general conditional similarity
Consider conditions along two axes
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GeneCIS

® (GeneClS contains four conditional retrieval tasks for zero-shot evaluation
e Dataset is constructed from COCO and VAW (Visual Genome)
e 2k samples per task and a long tail of conditions. Full details in the paper.
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GeneClS: Change an Attribute

 |nputs: (i) Reference Image; (ii) Conditioning Text; (iii) Gallery of Target Images
e Outputs: Best matching gallery image (one correct answer)
® Distractors in gallery prevent shortcut solutions
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Method

e Key challenge: Open-set of similarity conditions.
® |mpossible to get exhaustively annotated training data

e Solution: Mine training data from image-caption datasets (Conceptual Captions 3M, CC3M)
e Collect millions triplets of (Reference Image, Target Image, Condition)

1. Image-Caption Data 2. Extract relationships 3. Construct triplets: (IX, I, ¢)
r young swimmer in a painting of a brown horse on a canv& ( L \ ( \
painting of a brown horse on a canvas, horse (subj.) = on (pred.) =@ meadow (obj.)

swimming pool with a black tail and upright posture
i with a black tail and upright posture

Entities:
—_— painting, horse,

Text-scene- canvas, tail, posture
graph l horse (subj.) = on (pred.) = canvas (obj.) Target Ob;.

1: painting (subj.) = of (pred.) = horse (obj.) C “on canvas” )
K: horse (subj.) @ on (pred.) & canvas (obj.)
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Shared subject
Different objects

Condition:

Target Pred.
+

Relationships: (‘Subject’ — 'Predicate’ —
'Object’)




Method

 \We now have millions of training triplets (we mine 1.6\ triplets)

e Embed images and text with CLIP-initialized encoders

e Condition reference image features on text condition with ‘Combiner’ module [1]
e Train contrastively
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[1] Conditioned and Composed Image Retrieval Combining and Partially Fine-Tuning CLIP-Based Features, Baldrati et al., CVPRW 2022
https://openaiassets.blob.core.windows.net/$web/clip/draft/20210104b/overview-a.svg
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Training with manual
supervision from CIRR [1]

Dataset of 30K triplets

Average Recall @ 1 on GeneCIS
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[1] Image Retrieval on Real-life Images with Pre-trained Vision-and-Language Models, Liu et. al, ICCV 2021
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Further Analysis

e Zero-shot evaluation of our model outperforms many supervised baselines on similar benchmarks
e Our model gets state-of-the-art on MIT-States, despite zero-shot evaluation

CIRR MIT-States

Zero-shot  Recall @ | Recall @ 5 Recall @ 10
Zero-shot  Recall @ | Recall @ 5 Recall @ 10
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Image Only v 73 23.9 34.7
Text Only J/ 20.7 43.9 56.1 Image Only v 3.7 14.0 22.9
Image + Text v 21.8 50.9 63.7 Text Only e 11.2 21.7 11.2
Combiner (CC3M, Ours) v 27.3 57.0 71.1 Image + Text v 12.8 31.4 42.5
Combiner (CC3M, Ours) v 15.6 37.5 49.2




Further Analysis

e GeneClS performance is only weakly correlated with ImageNet accuracy of backbone
* |n contrast to common vision tasks like detection and segmentation
e GeneClS probes an important but orthogonal visual capability to most benchmarks
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Thank you for listening

Email:
sagar@robots.ox.ac.uk

Project page (+QR Link):
https://sgvaze.github.io/genecis/




