
Neighborhood Attention Transformer
Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.

(TUE-PM-197)

Self Attention (ViT) Window Self Attention (Swin)

!

Shifted Window Self Attention (Swin) Neighborhood Attention (NAT)



Neighborhood Attention

Pixels attend to their nearest-
neighboring pixels.

Linear complexity with respect to 
feature map size.

Neighborhood Attention

Query

Key-value pair





Neighborhood Attention Transformer
H ×W

O
ve
rla

pp
in
g

To
ke
ni
ze
r

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
4 × W

4

×N1

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
8 × W

8

×N2

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
16 × W

16

×N3

NA
T

Bl
oc
k

H
32 × W

32

×N4

Fu
lly

Co
nn

ec
te
d

Ba
ld
Ea
gl
e

LN

NA

LN

MLP

⊕

⊕

NAT BlockNeighborhood Attention Transformer Architecture

2.5 5.0 7.5 10.0 12.5 15.0 17.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

0.0

80.5

ConvNeXt-T

ConvNeXt-S

ConvNeXt-B

Swin-T

Swin-S

Swin-B

NAT-M

NAT-T

NAT-S

NAT-B

Model parameters

Mini
Tiny

Small

Base

∼ 20M
∼ 30M

∼ 50M

∼ 90M

GFLOPs

Accuracy Neighborhood Attention Transformer (CVPR 2023)
ConvNeXt (CVPR 2022)
Swin Transformer (ICCV 2021)



Background



Self attention

𝐷𝑃𝑆𝐴 𝑄,𝐾, 𝑉

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾!

𝑑
𝑉

Query

Key-value pair

Self Attention



Global receptive field

𝑟 = 𝑛
where 𝑛 is the number of inputs 
(tokens/pixels).

In this example, 𝑛 = 27, therefore:
𝑟 = 27

SA SA SA SA



Translationally equivariant
Applying a translation to the input to self attention is equal to 
applying the same translation to its output given the same input.
Self attention is translationally equivariant, because it is invariant to 
permutation.

𝑆𝐴	(𝑥) 𝒯(𝑆𝐴	(𝑥)) 𝑆𝐴	(𝒯(𝑥))𝑥 𝒯(𝑥)

𝑆𝐴! = 𝑆𝐴	 ∘ 𝑆𝐴



Self attention

Every pixel attending to every 
pixel is quadratic w.r.t. 
resolution.

Self Attention

Query

Key-value pair



Sliding window attention 
(a.k.a. SASA)

Every query attends to the pixels 
around it, with its corresponding 
value itself centered.

(Similar pattern to zero-padded 
convolutions.)

Ramachandran et al. "Stand-alone self-attention in vision models." In NeurIPS 2019.
Beltagy et al. "Longformer: The long-document transformer." 2020.
Zaheer et al. "Big bird: Transformers for longer sequences." In NeurIPS 2020.

Query

Key-value pair

Sliding Window Attention



Translationally equivariant

Similar to convolutions, sliding window attention is equivariant to 
translations.

𝑆𝑊𝐴!(𝑥) 𝒯(𝑆𝑊𝐴!(𝑥)) 𝑆𝑊𝐴!(𝒯(𝑥))𝑥 𝒯(𝑥)

𝑆𝑊𝐴! = 𝑆𝑊𝐴	 ∘ 𝑆𝑊𝐴



Receptive field

Linearly growing receptive field 
(identical to convolutions)

𝑟 = ℓ 𝑘 − 1 + 1

where 𝑘 is window/kernel size, and ℓ is 
the number of layers.

In this example, 𝑘 = 3, ℓ = 4, therefore:
𝑟 = 9

Sliding window attention



Challenge 1: Implementation

• Self attention breaks down to two 
matrix multiplications, with a 
softmax in between.

• Convolutions can be modeled as 
matrix multiplications (implicit 
GEMM.)

• Sliding window attention cannot 
be modeled in the same way; and 
even if it were, it’s not practical 
through a Python interface. Sliding Window Attention

Query

Key-value pair



Challenge 2: Corner cases

• And the zero padding in the 
corners can quickly become a 
problem as window size 
grows…

• Larger window => larger 
padding => smaller average 
receptive field.

Sliding Window Attention

Query

Key-value pair



Window self attention 
(a.k.a blocked / partitioned attention)

1. Partition inputs of fixed size
2. Apply self attention to each
3. Merge

Liu et al. “Swin Transformer: Hierarchical vision transformer using shifted windows.” In ICCV 2021.
Vaswani et al. "Scaling local self-attention for parameter efficient visual backbones." In CVPR 2021.

Window Self Attention

Query

Key-value pair



Window self attention 
(a.k.a blocked / partitioned attention)

• Linear time complexity,

• Trivial to implement without 
modifying the attention 
operator,

• Constant # of interactions per 
token.

Window Self Attention

Query

Key-value pair



Window self attention

Constant receptive field…

𝑟 = 𝑘

where 𝑘 is window/kernel size.

In this example, 𝑘 = 3, therefore:
𝑟 = 3

WSA WSA WSA WSA



Cyclic shift

1. Shift pixels to get “shifted 
windows” ,

2. Apply masked window self 
attention,

3. Shift back.

Shifted Window Self Attention

Liu et al. “Swin Transformer: Hierarchical vision transformer using shifted windows.” In ICCV 2021.

Query

Key-value pair



WSA + SWSA

• Linearly growing receptive field

• 𝑟 = ℓ𝑘
where 𝑘 is window/kernel size, and ℓ is 
the number of layers.

In this example, 𝑘 = 3, ℓ = 4, therefore:
𝑟 = 12

WSA SWSA WSA SWSA



NOT translationally equivariant

Window self attention is not translationally equivariant, primarily because 
the lack of overlaps, and even with the pixel shifts, the overlap is still half of 
the window size.
It is also correct to say that WSA+SWSA relaxes translational equivariance.

𝑆𝑤(𝑥) 𝒯(𝑆𝑤	(𝑥)) 𝑆𝑤	(𝒯(𝑥))

𝑆𝑤 = 𝑊𝑆𝐴	 ∘ 𝑆𝑊𝑆𝐴

𝑥 𝒯(𝑥)



Drawbacks

• Input size is required to be divisible by window size,

• Window size can only be as large as half the input size,

• Lack of symmetry and translational equivariance.



Neighborhood Attention



Neighborhood Attention
Given the query, key, and value projections (𝑄,𝐾, 𝑉), and 
neighborhood size 𝑘 , we define attention weights as:

where 𝜌!(𝑖) denotes the j-th nearest neighbor of token 𝑖. 
We then define values as:

Neighborhood Attention with neighborhood size 𝑘 for 
token 𝑖 is then defined as:

Query

Key-value pair

Neighborhood Attention



Neighborhood Attention

Pixels attend to their nearest-
neighboring pixels.

Advantages:
üFixed # of interactions for every 

pixel
üLinear complexity

Query

Key-value pair

Neighborhood Attention



Receptive field

Linearly growing receptive field

𝑟 = ℓ 𝑘 − 1 + 1

where 𝑘 is window/kernel size, and ℓ is 
the number of layers.

In this example, 𝑘 = 3, ℓ = 4, therefore:
𝑟 = 9

NA NA NA NA



Translationally equivariant

Similar to SA and sliding window attention, NA is also translationally 
equivariant.

𝑥 𝒯(𝑥) 𝑁𝐴!(𝑥) 𝒯(𝑁𝐴!	(𝑥)) 𝑁𝐴!	(𝒯(𝑥))

𝑁𝐴! = 𝑁𝐴	 ∘ 𝑁𝐴



Neighborhood Attention

Pixels attend to their nearest-
neighboring pixels.

Advantages:
üFixed # of interactions for every 

pixel
üLinear complexity
üRF grows without cyclic shift
üTranslationally equivariant

Query

Key-value pair

Neighborhood Attention



Neighborhood Attention approaches Self Attention

Query

Key-value pair

Neighborhood Attention Self Attention



Neighborhood Attention approaches Self Attention

Query

Key-value pair

Neighborhood Attention Self Attention



Neighborhood Attention approaches Self Attention

Query

Key-value pair

Neighborhood Attention Self Attention



Neighborhood Attention approaches Self Attention

Query

Key-value pair

Neighborhood Attention Self Attention



Implementation?

Implementation is no easier than 
sliding window attention.
(In fact it is is slightly more 
difficult than sliding window 
attention.)

Solution: 𝒩ATTEN .

Query

Key-value pair

Neighborhood Attention



1 2 3 4 5 6 7 8 9

Swin(PyTorch)

NAT (PyTorch)

NAT (NATTEN v0.01)

NAT (NATTEN v0.02)

NAT (NATTEN v0.03)

NAT (NATTEN v0.04)

NAT (NATTEN v0.05)

NAT (NATTEN v0.06)

NAT (NATTEN v0.07)

NAT (NATTEN v0.08)

NAT (NATTEN v0.10)

NAT (NATTEN v0.11)

NAT (NATTEN v0.12)

1.3 days

9.3 days

6.3 days

5.5 days

5.2 days

4.4 days

3.9 days

3.2 days

2.9 days

2.8 days

1.8 days

1.4 days

1.2 days

Training time (days) on 8xA100s

Neighborhood Attention CUDA Extension (NATTEN) development progress



Per-layer latency compared to WSA+SWSA

7 × 7 14 × 14 28 × 28 56 × 56 112 × 112 224 × 224 448 × 448 896 × 896 1792 × 1792
0

20

40

60

80

100

120

140

160

180

78%

100%

114%

74%

100%

140%

36%

100%

131%

13%

100%

132%

7%

100%

124%

5%

100%

122%

100%

121%

100%

121%

100%

120%

Feature map resolution

Re
la
tiv

e
sp
ee
d
w
.r.
t.
W
SA

+S
W
SA

(%
)

NA + NA (NAT) (PyTorch)

WSA + SWSA (Swin) (PyTorch)

NA + NA (NAT) (NATTEN + PyTorch)



shi-labs.com/natten

https://shi-labs.com/natten


Architecture

• Transformer block with 
Neighborhood Attention (+ 
relative positional biases) instead 
of Self Attention / Window Self 
Attention,

• 7x7 NA windows (following Swin),

• Standard layer norms, skip 
connection, and MLP layer 
following the original Transformer 
design.

H ×W

O
ve
rla

pp
in
g

To
ke
ni
ze
r

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
4 × W

4

×N1

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
8 × W

8

×N2

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
16 × W

16

×N3
NA

T
Bl
oc
k

H
32 × W

32

×N4

Fu
lly

Co
nn

ec
te
d

Ba
ld
Ea
gl
e

LN

NA

LN

MLP

⊕

⊕

NAT BlockNeighborhood Attention Transformer Architecture



Architecture

• Hierarchical Vision Transformer with 4 levels,
• Conventional feature map scales (1/4, 1/8, 1/16, 1/32),
• Convolutional downsamplers instead of patched downsamplers,
• Slightly deeper, slightly thinner compared to Swin.

H ×W

O
ve
rla

pp
in
g

To
ke
ni
ze
r

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
4 × W

4

×N1

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
8 × W

8

×N2

NA
T

Bl
oc
k

O
ve
rla

pp
in
g

Do
w
ns
am

pl
er

H
16 × W

16

×N3

NA
T

Bl
oc
k

H
32 × W

32

×N4

Fu
lly

Co
nn

ec
te
d

Ba
ld
Ea
gl
e

LN

NA

LN

MLP

⊕

⊕

NAT BlockNeighborhood Attention Transformer Architecture



Image Classification
Model # of FLOPs Thru. Memory Top-1

Params (imgs/sec) (GB) (%)

�NAT-M 20 M 2.7 G 2135 2.4 81.8

�Swin-T 28 M 4.5 G 1730 4.8 81.3
•ConvNeXt-T 28 M 4.5 G 2491 3.4 82.1
�NAT-T 28 M 4.3 G 1541 2.5 83.2

�Swin-S 50 M 8.7 G 1059 5.0 83.0
•ConvNeXt-S 50 M 8.7 G 1549 3.5 83.1
�NAT-S 51 M 7.8 G 1051 3.7 83.7

�Swin-B 88 M 15.4 G 776 6.7 83.5
•ConvNeXt-B 89 M 15.4 G 1107 4.8 83.8
�NAT-B 90 M 13.7 G 783 5.0 84.3

ImageNet-1K image classification performance. Throughput and peak memory usage are 
measured from forward passes with a batch size of 256 on a single A100 GPU.



Object detection & instance segmentation
Backbone # of FLOPs Thru. AP

b
AP

b
50 AP

b
75 AP

m
AP

m
50 AP

m
75

Params (FPS)

Mask R-CNN - 3x schedule

�NAT-M 40 M 225 G 54.1 46.5 68.1 51.3 41.7 65.2 44.7

�Swin-T 48 M 267 G 45.1 46.0 68.1 50.3 41.6 65.1 44.9
•ConvNeXt-T 48 M 262 G 52.0 46.2 67.0 50.8 41.7 65.0 44.9
�NAT-T 48 M 258 G 44.5 47.7 69.0 52.6 42.6 66.1 45.9

�Swin-S 69 M 359 G 31.7 48.5 70.2 53.5 43.3 67.3 46.6
�NAT-S 70 M 330 G 34.8 48.4 69.8 53.2 43.2 66.9 46.5

Cascade Mask R-CNN - 3x schedule

�NAT-M 77 M 704 G 27.8 50.3 68.9 54.9 43.6 66.4 47.2

�Swin-T 86 M 745 G 25.1 50.4 69.2 54.7 43.7 66.6 47.3
•ConvNeXt-T 86 M 741 G 27.3 50.4 69.1 54.8 43.7 66.5 47.3
�NAT-T 85 M 737 G 24.9 51.4 70.0 55.9 44.5 67.6 47.9

�Swin-S 107 M 838 G 20.3 51.9 70.7 56.3 45.0 68.2 48.8
•ConvNeXt-S 108 M 827 G 23.0 51.9 70.8 56.5 45.0 68.4 49.1
�NAT-S 108 M 809 G 21.7 52.0 70.4 56.3 44.9 68.1 48.6

�Swin-B 145 M 982 G 17.3 51.9 70.5 56.4 45.0 68.1 48.9
•ConvNeXt-B 146 M 964 G 19.5 52.7 71.3 57.2 45.6 68.9 49.5
�NAT-B 147 M 931 G 18.6 52.5 71.1 57.1 45.2 68.6 49.0

COCO object detection and instance segmentation performance. Throughput is measured 
on a single A100 GPU.



Semantic segmentation

Backbone # of FLOPs Thru. mIoU

Params (FPS) single scale multi scale

�NAT-M 50 M 900 G 24.5 45.1 46.4

�Swin-T 60 M 946 G 21.3 44.5 45.8
•ConvNeXt-T 60 M 939 G 23.3 46.0 46.7
�NAT-T 58 M 934 G 21.4 47.1 48.4

�Swin-S 81 M 1040 G 17.0 47.6 49.5
•ConvNeXt-S 82 M 1027 G 19.1 48.7 49.6
�NAT-S 82 M 1010 G 17.9 48.0 49.5

�Swin-B 121 M 1188 G 14.6 48.1 49.7
•ConvNeXt-B 122 M 1170 G 16.4 49.1 49.9
�NAT-B 123 M 1137 G 15.6 48.5 49.7
ADE20K semantic segmentation performance. Throughput is measured on a single 
A100 GPU.



Conclusion

• Sliding window attention has 
been roadblocked by 
implementation and 
performance issues.

• We attempt to resolve the 
former with NATTEN, and the 
latter with Neighborhood 
Attention (NA).

Query

Key-value pair

Neighborhood Attention



Conclusion - Cont’d

• When restricting self attention 
is desired, NA offers more 
flexibility compared to blocked 
attention (larger window sizes, 
dilation), and maintains 
properties such as symmetry 
and translational equivariance.

Query

Key-value pair

Neighborhood Attention



Conclusion - Cont’d

• Models based on NA are just as 
scalable as ones based on 
blocked attention (i.e. Swin) on 
both image classification, and 
downstream tasks.

Query

Key-value pair

Neighborhood Attention



Thank you for your attention !

• Please drop by and see our poster:
• Tuesday, June 20th, 4:30 – 6:00 PM
• West Building Exhibit Halls, ABC 197

• Our GitHub page:
• SHI-Labs/Neighborhood-Attention-Transformer

• Install 𝒩ATTEN via pip: 
• SHI-Labs.com/NATTEN , or
• pip install natten

https://github.com/SHI-Labs/Neighborhood-Attention-Transformer
https://shi-labs.com/natten

