Self Attention (ViT)

Neighborhood Attention Transformer

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.

Window Self Attention (Swin) Shifted Window Self Attention (Swin)

Neighborhood Attention (NAT)

(TUE-PM-197)

SO I | PN -

. . Query

- Neighborhood Attention N =

Pixels attend to their nearest-
neighboring pixels.

Linear complexity with respect to
feature map size.

Neighborhood Attention

NATTEN

NEIGHBORHOOD ATTENTION EXTENSION

BRINGING ATTENTION TO A NEIGHBORHOOD NEAR YOU!

NATTEN is an extension to PyTorch, which provides the first fast sliding window attention with efficient CPU and CUDA ker-

nels. It provides Neighborhood Attention (local attention) and Dilated Neighborhood Attention (sparse global attention, a.k.a.

dilated local attention) as PyTorch modules for both 1D and 2D data.

GitHub / PyPI

Neighborhood Attention Transformers

Install with pip

Latest release: 0.14.6

Please select your preferred PyTorch version with the correct CUDA build, or CPU build if you're not using CUDA:
PyTorch: 2.0 1.13 1.12.1 1.12 1.11 1.10.1 1.10 1.9 1.8

CUDA 11.8 Run this command:

Copy
CUDA 11.7

pip3 install natten -f https://shi-labs.com/natten/wheels/cull8/torch2.0.0/index.html
CPU

Neighborhood Attention T

HxW

)
8
=%
=y
©
=
[
>
o

sl
==

Block

s 2
[} =
S s
S s
3 5]
2 >

S}

X Ny

.

R0
Q
£
©
a
c
2
o

a

ol
o=

NAT
Block
Overlapping
Downsampler

X No

Overlapping
Downsampler

ransformer

Fully
Connected
Bald Eagle

Neighborhood Attention Transformer Architecture

emmmEEEEEmsEEE s,

NAT Block

Accuracy @ Neighborhood Attention Transformer (CVPR 2023) NAT-B
gas5 | |®@ ConvNeXt(CVPR2022)
@ swin Transformer (ICCV 2021)
84.0 |
ConvNeXt-B
T </ — Swin-B
NATT s ComwNexts T e
83.0 |
// ””—
82.5 | ,/I ””’f’
’ y e e Model parameters
III ’,/’ //
820 |
’ / ConvNeXt-T ’/’
‘ e Base ~90M
815 } NAT-M //,
- Small ~ 50M
Swin-T
Tiny ~30M
81.0 | Mini ~20M
80.5)))))))
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 GFLOPs

Background

Query

Key-value pair

- Self attention

DPSA(Q,K,V)

= softm (QKT>V
= ax 7

Self Attention

OO

AN

HENEERE N

SA

SA

SA

SA

Global receptive field

is the number of inputs

wheren

(

).

n

tokens/pixels

,n = 27, therefore:
r=27

is example

In th

Translationally equivariant

Applying a translation to the input to self attention is equal to
applying the same translation to its output given the same input.

Self attention is translationally equivariant, because it is invariant to
permutation.

T (%) SA (x) T(SA (x)) SA (T (%))

SA? = SA o SA

Query

Key-value pair

- Self attention

Every pixel attending to every
pixel is quadratic w.r.t.
resolution.

Self Attention

Query

Key-value pair

s

Sliding window attention
(a.k.a. SASA)

Every query attends to the pixels o
around it, with its corresponding
value itself centered.

(Similar pattern to zero-padded
convolutions.)

Sliding Window Attention

Ramachandran et al. "Stand-alone self-attention in vision models." In NeurlPS 2019.
Beltagy et al. "Longformer: The long-document transformer.” 2020.
Zaheer et al. "Big bird: Transformers for longer sequences.” In NeurlPS 2020.

Translationally equivariant

Similar to convolutions, sliding window attention is equivariant to
translations.

T (%) SWA2(x) T (SW A2 (x)) SWAZ(T (x))

SWA?* = SWA o SWA

Receptive field

Linearly growing receptive field
(identical to convolutions)

r=4¥(k—-1)+1

where k is window/kernel size, and £ is
the number of layers.

In this example, k = 3, ¥ = 4, therefore:
r=9

Y o v v ¢

Y O

N B

Y B O

N o o v ¢

N v o

NN B

R O

Y o ¢

Sliding window attention

Query

Key-value pair

s

il Challenge 1: Implementation

» Self attention breaks down to two
matrix multiplications, with a B
softmax in between.

* Convolutions can be modeled as
matrix multiplications (implicit
GEMM.)

* Sliding window attention cannot
be modeled in the same way; and
even if it were, it’s not practical
through a Python interface.

Sliding Window Attention

Query

-
- Challenge 2: Corner cases [e

* And the zero paddingin the
corners can quickly become a =
problem as window size
grows...
-

 Larger window => larger
padding =>smaller average o il i VS
receptive field. m—— T

Sliding Window Attention

Bl o
Window self attention |:|.

(a.k.a blocked / partitioned attention)

1. Partition inputs of fixed size
2. Apply self attention to each

3. Merge

Window Self Attention

Liu et al. “Swin Transformer: Hierarchical vision transformer using shifted windows.” In ICCV 2021.
Vaswani et al. "Scaling local self-attention for parameter efficient visual backbones." In CVPR 2021.

Bl o
Window self attention |:|.

(a.k.a blocked / partitioned attention)

* Linear time complexity,

* Trivial to implement without
modifying the attention
operator,

 Constant # of interactions per
token.

Window Self Attention

Window self attention

Constant receptive field...

r==k
where k is window/kernel size.

In this example, k = 3, therefore:
r=3

(IO IO I IC eI

N

HEEEEE RN OO OO0

[| | ||

CIIOC OIS eI

NN v [|

WSA

WSA

WSA

WSA

. . Query

Jll Cyclic shift]

Liu et al. “Swin Transformer: Hierarchical vision transformer using shifted windows.” In ICCV 2021.

1. Shift pixels to get “shifted
windows”,

2. Apply masked window self
attention,

3. Shift back.

Shifted Window Self Attention

WSA + SWSA

* Linearly growing receptive field

e r ={k

where k is window/kernel size, and £ is
the number of layers.

In this example, k = 3, ¥ = 4, therefore:
r=12

I O

NN nnn

I —
i
0 O 0
0 O
HE——
EEEEE .
0 O O
EEEEEE .
L] L]]

IO I I TR I I I CIC]

WSA

SWSA

WSA

SWSA

NOT translationally equivariant

Window self attention is not translationally equivariant, primarily because
the lack of overlaps, and even with the pixel shifts, the overlap is still half of
the window size.

It is also correct to say that WSA+SWSA relaxes translational equivariance.

T (x) Sw(x) T(Sw (x)) Sw (T (x))

Sw =WSA o SWSA

- Drawbacks

* Input size is required to be divisible by window size,
* Window size can only be as large as half the input size,

 Lack of symmetry and translational equivariance.

Neighborhood Attention

. . Query

- Neighborhood Attention N =

Given the query, key, and value projections (Q, K, V), and
neighborhood size k , we define attention weights as:

Qi (z) + Bip. (i)]
QiK,, +B<z pa (i)

AF —

1

_QiKg; (3) + Bi,px (3))-

where p; (i) denotes the j-th nearest neighbor of token i.

We then define values as:
T
\': [Vl(z) VI - Vk(z)]

Neighborhood Attention with neighborhood size k for
token i is then defined as:

NAk (i) = softmax (Ak) V’C Neighborhood Attention

Vd

. . Query

- Neighborhood Attention N =

Pixels attend to their nearest-
neighboring pixels.

Advantages:

v'Fixed # of interactions for every
pixel

v'Linear complexity

Neighborhood Attention

Receptive field

Linearly growing receptive field
r=4¥(k—-1)+1

where k is window/kernel size, and £ is
the number of layers.

In this example, k = 3, ¥ = 4, therefore:
r=9

[]
[]
[]
[]
[]
[]
[]
[]
[]

Y O

N O I [

R o [

N O

NA

Y O

NA

R O | [[

NA

Y B [

Y

NA

Translationally equivariant

Similar to SA and sliding window attention, NA is also translationally
equivariant.

T (x) NA?(x) T(NA? (x)) NA? (T (x))

NA? = NA o NA

il Neighborhood Attention

Pixels attend to their nearest-
neighboring pixels.

Advantages:

v'Fixed # of interactions for every
pixel

v'Linear complexity

v'RF grows without cyclic shift
v'Translationally equivariant

. . Query

D. Key-value pair

Neighborhood Attention

. Query
- Neighborhood Attention approaches Self Attention .Key‘“a‘“epair

Neighborhood Attention Self Attention

. Query
- Neighborhood Attention approaches Self Attention .Key‘“a‘“epair

N rial ﬁu

mm!mmwy%mﬁ ﬂ;ﬁk E *‘x e
S S Wl ﬁ‘&ﬁﬁ

Neighborhood Attention Self Attention

. Query
- Neighborhood Attention approaches Self Attention .Key‘“a‘“epair

* ‘“&%

L hwET T
RasRBELL A EEE

Neighborhood Attention Self Attention

. Query
- Neighborhood Attention approaches Self Attention .Key'va'“epair

Neighborhood Attention Self Attention

. . Query

il 'mplementation? B e

Implementation is no easier than
sliding window attention.

(Infactitisis slightly more
difficult than sliding window
attention.)

Solution: NATTEN .

Neighborhood Attention

NAT (NATTEN v0.12
NAT (NATTEN v0.11
NAT (NATTEN v0.10
NAT (NATTEN v0.08
NAT (NATTEN v0.07
NAT (NATTEN v0.06

NAT (NATTEN v0.04
NAT (NATTEN v0.03
NAT (NATTEN v0.02
NAT (NATTEN v0.01

NAT (PyTorch

Swin(PyTorch

Neighborhood Attention CUDA Extension (NATTEN) development progress

)
)
)
)
)
)
NAT (NATTEN v0.05)
)
)
)
)
)
) —

1.3 days

9.3 days

4 5 6
Training time (days) on 8xA100s

il Per-layer latency compared to WSA+SWSA

180

I NA + NA (NAT) (PyTorch)
160 [WSA + SWSA (Swin) (PyTorch)
[NA + NA (NAT) (AATTEN + PyTorch)

140 %

140

131% 132%

121% 121% 120%

120

100 % 100 % 100 % 100 %

100 % 100 %

100

80

60

Relative speed w.r.t. WSA+SWSA (%)

40

20

Tx7 14x14 28x28 56 x 56 112x 112 224 x 224 448 x 448 896 x 896 1792 x 1792
Feature map resolution

shi-labs.com/natten N A.T T EN

NEIGHBORHOOD ATTENTION EXTENSION

BRINGING ATTENTION TO A NEIGHBORHOOD NEAR YOU!

NATTEN is an extension to PyTorch, which provides the first fast sliding window attention with efficient CPU and CUDA ker-

nels. It provides Neighborhood Attention (local attention) and Dilated Neighborhood Attention (sparse global attention, a.k.a.

dilated local attention) as PyTorch modules for both 1D and 2D data.

GitHub / PyPI

Neighborhood Attention Transformers

Install with pip

Latest release: 0.14.6

Please select your preferred PyTorch version with the correct CUDA build, or CPU build if you're not using CUDA:
PyTorch: 2.0 1.13 1.12.1 1.12 1.11 1.10.1 1.10 1.9 1.8

CUDA 11.8 Run this command:

Copy
CUDA 11.7

pip3 install natten -f https://shi-labs.com/natten/wheels/cull8/torch2.0.0/index.html
CPU

https://shi-labs.com/natten

- Architecture

* Transformer block with
Neighborhood Attention (+

relative positional biases) instead
of Self Attention / Window Self

Attention,
* 7x7 NA windows (following Swin),

* Standard layer norms, skip
connection, and MLP fayer
following the original Transformer
design.

[> .
. MLP .
LN :
. 'y .
T\l fa u
] N ™\ 1
. NA .
. LN .
] *]

NAT Block

Architecture

A

(. p :
: MLP '
Hox W gx¥ Fx ¥ Ex5] |
: : ' e |
oo oo L oo @ [LN]
[c = 9 9 ' '
g8 sl |3 se| |3 | B - L S S
83 8 5 LSo—P»c 3 S o—> S 2>y 1 ' '
ragiv - C m T C m L & ° [l '
°>‘) ,9 g = g = o © 1] NA]
3 338 58 o : "
| : :
X Ny X Ny ><]\f3 I L":l :
I O i3

Neighborhood Attention Transformer Architecture NAT Block

* Hierarchical Vision Transformer with 4 levels,
* Conventional feature map scales (1/4, 1/8,1/16, 1/32),
* Convolutional downsamplers instead of patched downsamplers,

* Slightly deeper, slightly thinner compared to Swin.

il |mage Classification

Model #of FLOPs Thru. Memory Top-1
Params (imgs/sec) (GB) (%)
o NAT-M 20M 277G 2135 2.4 81.8
Swin-T 28M 45G 1730 4.8 81.3
e ConvNeXt-T 28M 45G 2491 3.4 82.1
o NAT-T 286M 43G 1541 2.5 83.2
Swin-S 50M 8.7G 1059 5.0 83.0
e ConvNeXt-S 50M 8.7G 1549 3.5 83.1
o NAT-S 51M 786G 1051 3.7 83.7
Swin-B 88M 154G 776 6.7 83.5
e ConvNeXt-B 89M 154G 1107 4.8 83.8
o NAT-B 90M 137G 783 5.0 84.3

ImageNet-1K image classification performance. Throughput and peak memory usage are
measured from forward passes with a batch size of 256 on a single A100 GPU.

il Object detection & instance segmentation

Backbone #of FLOPs Thru.|AP® APP5y APP75|AP™ AP™5 AP™7s
Params (FPS)
Mask R-CNN - 3x schedule
o NAT-M 40M 225G 541 |465 681 513 [41.7 652 447
Swin-T 48M 267G 45.1 |46.0 68.1 503 [41.6 651 449
e ConvNeXt-T 48M 262G 52.0 |46.2 670 50.8 |[41.7 650 449
o NAT-T 48M 258G 445 |4777 69.0 52.6 [42.6 66.1 459
Swin-S 69M 359G 31.7 |48.5 702 535 (433 673 46.6
o NAT-S 70M 330G 34.8 484 69.8 532 |432 669 46.5
Cascade Mask R-CNN - 3x schedule
o NAT-M 7TM 704G 27.8 ‘ 50.3 689 549 | 436 664 472
Swin-T 86 M 745G 25.1 |504 69.2 547 (4377 66.6 47.3
e ConvNeXt-T 86M 741G 273 (504 69.1 54.8 |43.7 66.5 47.3
o NAT-T 8M 737G 249 |514 70.0 559 |[445 67.6 479
Swin-S 107M 838G 20.3 |51.9 70.7 563 [450 68.2 48.8
e ConvNeXt-S 108M 827G 23.0 |519 708 56.5 450 684 49.1
o NAT-S 108M 809G 21.7 |[52.0 704 563 449 68.1 48.6
Swin-B 145M 982G 17.3 |519 705 564 [45.0 68.1 48.9
e ConvNeXt-B 146 M 964G 195 (527 71.3 572 |456 689 495
o NAT-B 147M 931G 18.6 |52.5 71.1 57.1 |452 68.6 49.0

COCO object detection and instance segmentation performance. Throughput is measured
on a single A100 GPU.

Jll Semantic segmentation

Backbone #of FLOPs Thru. mloU
Params (FPS) | single scale multi scale
o NAT-M S50M 900G 24.5 45.1 46.4
Swin-T 60M 946G 21.3 44.5 45.8
e ConvNeXt-T 60M 939G 233 46.0 46.7
o NAT-T 58M 934G 214 47.1 48.4
Swin-S 81M 1040G 17.0 47.6 49.5
e ConvNeXt-S 82M 1027G 19.1 48.7 49.6
o NAT-S 82M 1010G 17.9 48.0 49.5
Swin-B 12IM 1188 G 14.6 48.1 497
e ConvNeXt-B 122M 1170G 164 49.1 499
o NAT-B 123M 1137G 15.6 48.5 49.7

ADE20K semantic segmentation performance. Throughput is measured on a single
A100 GPU.

- Conclusion

e Sliding window attention has
been roadblocked by
implementation and
performance issues.

* We attempt to resolve the
former with NATTEN, and the
latter with Neighborhood
Attention (NA).

. . Query

D. Key-value pair

Neighborhood Attention

. . Query

i Conclusion - Cont’d B e

* When restricting self attention
is desired, NA offers more
flexibility compared to blocked
attention (larger window sizes,
dilation), and maintains
properties such as symmetry
and translational equivariance.

Neighborhood Attention

- Conclusion - Cont’d

* Models based on NA are just as
scalable as ones based on
blocked attention (i.e. Swin) on
both image classification, and
downstream tasks.

. . Query

D. Key-value pair

Neighborhood Attention

il Thank you for your attention!

* Please drop by and see our poster:

« Tuesday, June 20, 4:30 - 6:00 PM
* West Building Exhibit Halls, ABC 197

* Our GitHub page:
« SHI-Labs/Neighborhood-Attention-Transformer
* Install MATTEN via pip:

e SHI-Labs.com/NATTEN , or
« plp tnstall natten

https://github.com/SHI-Labs/Neighborhood-Attention-Transformer
https://shi-labs.com/natten

