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Faster training/convergence using previous 
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Lower network size by storing only sparse 
weight residuals.
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Faster encoding/decoding speed

Real time decoding of videos!



Additional details

Paper and full presentation include:
• Scalability of our approach to longer and larger 

resolution videos. 
• Additional qualitative and quantitative results.

Visit us at poster #194 on Wednesday evening 
session (4:30 PM – 6:30 PM) at CVPR 2023!

Project page:
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• Exploits spatial 
redundancy via 
patches.

• Scales well with 
increasing frame 
size/resolution.

Patch volume prediction

Groupwise prediction

• Exploits temporal 
redundancy via 
frame groups.

• Directly extends to 
arbitrarily long 
videos.
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Network architecture

Optimize network weights     with loss function:
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Datasets
UVG-HD: 7 HD videos (1920x1080) at 120 FPS and mostly 600 frames
UVG-4K: 2x upsampling of UVG-HD at 4K resolution (3840x2160)
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+7dB improvement in PSNR over SIREN at similar bits per pixel (BPP)
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Faster encoding/decoding speed

12x lower encoding time and 6x faster decoding than NeRV at similar PSNR and BPP



Scalability to 4K videos

Scales better to 4K videos (2160x3840) with 6x faster encoding and decoding at similar PSNR, BPP
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Scalability to longer videos

NeRV degrades in performance for longer videos due to fixed size model



Scalability to longer videos

NIRVANA maintains performance with longer videos due to autoregressive modeling
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Video content adaptability

NIRVANA adapts to 
video content with 
static scenes 
requiring lesser BPP



Qualitative comparisons

NIRVANA achieves better reconstructions preserving finer details in the video.
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GPU scalability

NIRVANA scales almost linearly with increasing GPUs in terms of encoding speed



Conclusion

• We present an autoregressive patchwise modeling approach to video INRs 
which exploits the spatial temporal redundancies present.

Project page:



Conclusion

• We present an autoregressive patchwise modeling approach to video INRs 
which exploits the spatial temporal redundancies present.
• Our approach has much faster training and inference speeds than prior works 

while maintaining similar reconstruction performance and model size.

Project page:



Conclusion

• We present an autoregressive patchwise modeling approach to video INRs 
which exploits the spatiotemporal redundancies present.
• Our approach has much faster training and inference speeds than prior works 

while maintaining similar reconstruction performance and model size.
• Our approach scales well to varying video resolutions and durations while also 

adapting to the video content.

Project page:



Conclusion

• We present an autoregressive patchwise modeling approach to video INRs 
which exploits the spatiotemporal redundancies present.
• Our approach has much faster training and inference speeds than prior works 

while maintaining similar reconstruction performance and model size.
• Our approach scales well to varying video resolutions and durations while also 

adapting to the video content.

Visit us at poster #194 on Wednesday evening 
session (4:30 PM – 6:30 PM) at CVPR 2023!

Project page:


