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ViTs: A New Black Box
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- ViTs: a new go-to model for vision tasks
. Less structural bias — more flexible learning
. But what are they learning under different supervision?



Teaching Matters

How: Attention What: Features Why: Downstream Tasks
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- First in depth comparison of ViTs trained with different supervision
- ldentify commonalities and key differences
- Analysis covering Attention, Features, and Downstream Tasks




Additional Information

Poster Session: TUE-PM-321

Full Presentation Includes:

.- Overview of models
. Summary of experiments
. Key observations
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Abstract

Vision Transformers (ViTs) have gained significant pop-
ularity in recent years and have proliferated into many
applications.  However, their behavior under different
learning paradigms is not well explored. We compare
ViTs trained through different methods of supervision,
and show that they learn a diverse range of behaviors in
terms of their attention, representations, and downstream
performance. We also discover VIiT behaviors that are
consistent across supervision, including the emergence
of Offset Local Attention Heads. These are self-attention
heads that attend to a token adjacent to the current token
with a fixed directional offset, a phenomenon that to the
best of our knowledge has not been highlighted in any prior
work. Our analysis shows that ViTs are highly flexible and
learn to process local and global information in different
orders depending on their training method. We find that
contrastive self-supervised methods learn features that are
competitive with explicitly supervised features, and they
can even be superior for part-level tasks. We also find that
the representations of reconstruction-based models show
non-trivial similarity to contrastive self-supervised models.

1. Introduction

The field of Computer Vision has advanced massively
in the past decade, largely built on the backbone of Con-
volutional Neural Networks (CNNs). More recently, Vi-
sion Transformers (ViTs) [1%] have shown the potential
to overtake CNNs as the go-to visual processing model.
Prior works have asked the question do ViTs see like CNNs
do? [52], but in this work, we ask: how do ViTs learn un-
der different supervision? Past examinations of ViTs have
largely focused on models trained through full supervision.
Instead, we aim to characterize the differences and similar-
ities of ViTs trained through varying training methods, in-
cluding self-supervised methods. Unlike CNNs, the ViT ar-
chitecture imposes few structural biases to guide the learn-
ing of representations. This gives them the flexibility to

“Equal contributors.

Web:

Code:

How: Attention
Explicit Supervision (Fully Supervised, CLIP)

053 15 1 D

Contrastive Self-Supervision (DINO, MoCo)

Reconstruction-Based Self-Supervision (MAE, BEIT)

g 11 { [olw] [} ] [ [
SEENNROESEEw

Layer 12

What: Features Why: Downstream Tasks
Retrieval Correspondence
30| -

3

5 7 9 11 35 7 9 11
Layer Layer

mFS @CLIP ADINO vMoCo ®MAE @BET -Random

Figure 1. ViTs exhibit highly varied behaviors depending on
their method of training. In this work, we compare ViTs through
three domains of analysis representing the How, What, and Why of
ViTs. How do ViTs process information through attention? (Top)
Attention maps averaged over 5000 images show clear differences
in the mid-to-late layers. What do ViTs learn to represent? (Left)
Contrastive self-supervised ViTs have a greater feature similarity
to explicitly supervised ViTs, but also have some similarity with
ViTs trained through masked reconstruction. Why do we care
about using ViTs? (Right) We evaluate ViTs on a variety of global
and local tasks and show that the best model and layer vary greatly.

learn diverse information processing strategies, and through
our analyses, we uncover a wide array of ViT behaviors.
There are countless ways to analyze ViTs, so to guide
this analysis we choose three major domains which corre-
spond to the How, What, and Why of ViTs. For the How,
we focus on how ViTs process information through Atten-
tion. Multi-Headed Attention (MHA) layers are arguably
the key element of ViTs, and they most distinguish them




Experimental Design



Supervision Methods

Three supervision sub-categories:

- Explicit Supervision: Fully Supervised, CLIP
. Contrastive Self-Supervision: DINO, MoCo-v3
- Reconstruction Self-Supervision: MAE, BEIT

Focus on ViT-B/16 models in main work, and
more variations in the appendix



Areas of Analysis

How ViTs process information:
— Attention Analysis

What we take away from ViTs:
— Feature Analysis

Why we use ViTs:
— Downstream Task Analysis



Attention Analysis



The Size of ViT Attention

. Multi-Headed Attention (MHA) layers allow
tokens to look anywhere

. 196 spatial tokens and 1 CLS token

. >28,000 attention maps per image

Multiple strategies to summarize ViT attention
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Visualizing CLS Token Attention

- CLS token attention in
each layer and head

- Average over 5000
sample images

- Clear differences appear
in the mid-to-late layers
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Visualizing CLS Token Attention

CLIP DINO MoCo MAE BEIT

III S EEE BCH:-DER BOR

- CLS token attention in
each layer and head

- Average over 5000
sample images

- Clear differences appear
in the mid-to-late layers

showing 3 heads per model



Visualizing CLS Token Attention

DINO and MoCo create
many centered blobs
Salient objects are
usually centered

DINO & MoCo Layers 7-12: Object Centered Blobs
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Visualizing CLS Token Attention

MAE and BEiT have more CLIP DINO MoCo  MAE BEIT
diverse attention III S-S BCH:-DEE BOR

- They must reconstruct
the whole image, so they
need wider attend

MAE & BEIT Layers 7-12: D|verse Attention Maps
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Visualizing CLS Token Attention

FS and CLIP ViTs make CLIP DINO MoCo MAE BEIT
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Aligned Aggregated Spatial Token Attention

Strict Local Attention Heads Axial Local Attention Heads
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Soft Local Attention Heads Offset Local Attention Heads
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- Aligned Aggregated Attention Maps for Spatial Tokens
- We find different forms of local attention

. Offset Local Attention Heads with a fixed directional offset



Attention Distance and Saliency

Attention Distance CLS Attention Saliency

Distance
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Feature Analysis



Analyzing Last Layer Representations
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CLS token representations are usually similar for similar supervision strategies (explicit, contrastive,
reconstruction).

Unlike the CLS token representations, CLIP and FS have low similarity in their spatial representations.

There is a surprisingly elevated similarity in CLS representations between MAE and the contrastive
models, DINO and MoCo



Clustering on ImageNet50

Image Clustering (CLS) Image Clustering (Spat.)
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For CLS token features (left), cluster purity improves with depth exceﬁt for BEIT. This is likely because
the last layers of BEIT serve as a task-specific decoder, unlike MAE, where the decoder is separate and
discarded after pretraining.

For the spatial token features (right), the cluster purity of FS rises earlier compared with the FS CLS
toklenl. This suggests that the FS spatial tokens do more work gathering semantic information in the
early layers.



Downstream Tasks



Global Tasks: Classification and Retrieval

k-NN Classification Image Retrieval
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For global, image-level tasks like k-NN and image retrieval, methods
which have explicit supervision on the CLS token perform better than
others. The presence of label/text supervision helps achieve the good
performance for FS and CLIP.



Local Tasks: Segmentation and Keypoints

Video Object Segmentation Keypoint Correspondence
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For localized tasks like Video Object Segmentation and Keypoint
Correspondence, the best performance occurs in the mid-to-late layers.

Localized supervision methods like MAE and BEIT become much more
competitive on these tasks.



No Single “Winner”

Model Task Performance (Best Performing Layer)

Dataset ImageNet ROxford5k (M) Davis SPair-71k
Metric Top-117 mAP?T J and F Mean? PCK@0.11
FS 83.79 (12) 045 (12) 0.59 (8) 28.56 (9)

CLIP 75.75 (12) 0.40 (12) 0.60 (9) 30.70 (8)

DINO 76.06 (12) 0.37 (12) 0.60 (12) 28.28 (9)

MoCo 71.59 (12) 0.31 (12) 0.61 (11) 25.85 (9)

MAE 45.19 (12) 0.15 (10) 0.54 (12) 22.74 (11)
BEiT 26.84 (8) 0.14 (8) 0.58 (9) 24.11 (8)

Random 0.10 0.02 0.06 1.32

There is no single “best” model or layer for all downstream tasks.



Key Takeaways

. Sparse Repeating Attention Patterns in late layers of FS and CLIP
. Offset Local Attention Heads in all ViTs studied
- Local and Global information processed in different orders depending

on supervision
- ViTs differentiate salient foreground objects by the early-to-mid layers



Key Takeaways

. Surprisingly elevated CLS token feature similarity between DINO and
MAE

. Contrastive self-supervised features highly competitive for part-level
tasks

. For localized tasks, mid-to-late layer features are better than last layer
- No single “best” training method or layer for all downstream tasks
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Abstract

Vision Transformers (ViTs) have gained significant pop-
ularity in recent years and have proliferated into many
applications.  However, their behavior under different
learning paradigms is not well explored. We compare
ViTs trained through different methods of supervision,
and show that they learn a diverse range of behaviors in
terms of their attention, representations, and downstream
performance. We also discover ViT behaviors that are
consistent across supervision, including the emergence
of Offset Local Attention Heads. These are self-attention
heads that attend to a token adjacent to the current token
with a fixed directional offset, a phenomenon that to the
best of our knowledge has not been highlighted in any prior
work. Our analysis shows that ViTs are highly flexible and
learn to process local and global information in different
orders depending on their training method. We find that
contrastive self-supervised methods learn features that are
competitive with explicitly supervised features, and they
can even be superior for part-level tasks. We also find that
the representations of reconstruction-based models show
non-trivial similarity to contrastive self-supervised models.

1. Introduction

The field of Computer Vision has advanced massively
in the past decade, largely built on the backbone of Con-
volutional Neural Networks (CNNs). More recently, Vi-
sion Transformers (ViTs) [1%] have shown the potential
to overtake CNNs as the go-to visual processing model.
Prior works have asked the question do ViTs see like CNNs
do? [52], but in this work, we ask: how do ViTs learn un-
der different supervision? Past examinations of ViTs have
largely focused on models trained through full supervision.
Instead, we aim to characterize the differences and similar-
ities of ViTs trained through varying training methods, in-
cluding self-supervised methods. Unlike CNNs, the ViT ar-
chitecture imposes few structural biases to guide the learn-
ing of representations. This gives them the flexibility to
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Figure 1. ViTs exhibit highly varied behaviors depending on
their method of training. In this work, we compare ViTs through
three domains of analysis representing the How, What, and Why of
ViTs. How do ViTs process information through attention? (Top)
Attention maps averaged over 5000 images show clear differences
in the mid-to-late layers. What do ViTs learn to represent? (Left)
Contrastive self-supervised ViTs have a greater feature similarity
to explicitly supervised ViTs, but also have some similarity with
ViTs trained through masked reconstruction. Why do we care
about using ViTs? (Right) We evaluate ViTs on a variety of global
and local tasks and show that the best model and layer vary greatly.

learn diverse information processing strategies, and through
our analyses, we uncover a wide array of ViT behaviors.
There are countless ways to analyze ViTs, so to guide
this analysis we choose three major domains which corre-
spond to the How, What, and Why of ViTs. For the How,
we focus on how ViTs process information through Atten-
tion. Multi-Headed Attention (MHA) layers are arguably
the key element of ViTs, and they most distinguish them




