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Problem

* Model Attribution: Identify the source model of generated contents.
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1 Protrit of Edmond Belamy, 2018, created by GAN (Generative Adversarial Network).

2 An Al-Generated Picture Won an Art Prize.
3 Raphael S. (2019, Jul 14). Experts: A spy reportedly used an Al-picture to connect with sources on LinkedIn.



Open-Set Model Attribution

 Attribute images to known models and identify those from unknown ones.

Prior works: Our work:
Closed-set model attribution Open-set model attribution
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Existing Works on OSR

Discriminative-Based

Calibration
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Drawback: The performance depends
heavily on the closed-set classifier.



Existing Works on OSR

Discriminative-Based Generative-Based
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heavily on the closed-set classifier is too subtle to be thresholded



Existing Works on OSR

Discriminative-Based Generative-Based
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Drawback: The performance depends
heavily on the closed-set classifier

Drawback: Unable to produce diverse
open-set fingerprints
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of

lightweight augmentation models.

Train augmentation model

» Obijective
* Expand the simulated open space

progressively with diversity.

» Loss function
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* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.

Train augmentation model
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.

Train augmentation model
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.

Train feature extractor and
classification head

» Objective
1. Known class classification.
2. Distinguish augmented data from known
data, and separate different known and

augmented classes.
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POSE (Progressive Open Space Expansion)

* Key Idea: Progressively simulate the potential open space of unknown models via a set of
lightweight augmentation models.
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Dataset

Four groups of data: Seen Real, Seen Fake, Unseen Real, and three type of Unseen Fake

* Unseen fake include Unseen Seed, Unseen Architecture, and Unseen Dataset

Seen Real CelebA Face-HQ ImageNet Youtube LSUN-Bedroom LSUN-Cat  LSUN-Bus
Seen Fake StarGAN [10], StyleGAN3-r [23], SAGAN [56], FSGAN [37], ProGAN_seed0, StyleGAN, ProGAN,
ProGAN_seed0 [22] StyleGAN3-t SNGAN FaceSwap [I]  MMDGAN StyleGAN3  StyleGAN
Unseen ProGAN i i i ProGAN i i
Seed (seed1,2,3,4,5) (seedl1,2,3,4,5)
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ake ture MMDGAN [3], StVIeGAN (4] p gt GAN ’[j . FaceShifter [29] InfoMaxGAN MMDGAN, StyleGAN2,
InfoMaxGAN [28] “7°° - ontra - StyleGAN2  StyleGAN3
Unseen . . .
Dataset ProGAN, StyleGAN, StyleGAN3 (Cow, Sheep, Classroom, Bridge, Kitchen, Airplane, Church)
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Experimental Setup

 Compared Methods

e GAN attribution: PRNU [1], Yu et al. [2], DCT CNN [3], DNA-Det [4], and RepMix [5]
* GAN discovery: Girish et al. [6]
* Open-set recognition: OpenMax [7], PROSER [8], ARPL+CS [9], and DIAS [10]

[1] Do gans leave artificial fingerprints? In MIPR, 2019

[2] Attributing fake images to gans: Learning and analyzing gan fingerprints. In ICCV, 2019.

[3] Leveraging frequency analysis for deep fake image recognition. In ICML, 2020.

[4] Deepfake network architecture attribution. In AAAI, 2022.

[5] Repmix: Representation mixing for robust attribution of synthesized images. In ECCV, 2022.
[6] Towards discovery and attribution of open-world gan generated images. In ICCV, 2021

[7] Towards open set deep networks. In CVPR, 2016.

[8] Learning placeholders for open-set recognition. In CVPR, 2021.

[9] Adversarial reciprocal points learning for open set recognition. In TPAMI, 2021

[10] Difficulty-aware simulator for open set recognition. In ECCV, 2022
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 Compared Methods

e GAN attribution: PRNU [1], Yu et al. [2], DCT CNN [3], DNA-Det [4], and RepMix [5]

* GAN discovery: Girish et al. [6]

* Open-set recognition: OpenMax [7], PROSER [8], ARPL+CS [9], and DIAS [10]

* Testing

» Test image > Feature extractor F = Classification head H & Softmax - Confidence scores

* |If the max confidence score is larger than a threshold > Known category of the index

e Otherwise = Unknown

e Evaluation
* Accuracy: closed-set classification
* AUC: closed/open discrimination

* OSCR: trade-off between the two aspects
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Experimental Result

 Compare with GAN attribution methods

POSE outperforms existing fake image attribution methods in terms of closed-

set classification and closed/open discrimination.

* Compare with GAN discovery method

POSE is better in unknown model clustering.

Method Closed-Set Unseen Seed Unseen Architecture Unseen Dataset Unseen All
Accuracy AUC OSCR AUC OSCR AUC OSCR AUC OSCR
PRNU [33] 55.27 69.20 49.16 70.02 49.49 67.68  48.57 68.94 49.06
Yu et al. [57] 85.71 53.14 50.99 69.04 64.17 78.79  72.20 69.90 64.86
DCT-CNN [14] 86.16 5546 52.68 72.56 67.43 72.87 67.57 69.46 64.70
DNA-Det [50] 93.56 61.46 59.34 80.93 76.45 66.14  63.27 71.40 68.00
RepMix [5] 93.69 5470  53.26 72.86 70.49 78.69  76.02 71.74  69.43
POSE 94.81 68.15 67.25 84.17 81.62 88.24 85.64 82.76 80.50

 Compare with OSR methods

The simulated open space by POSE is more suitable for OSMA than off-the-

shelf OSR methods.

Method Avg. Purity NMI ARI
Girish et al. [16] (k=49)  32.89  61.89 21.05
POSE (k=49) 39.16  61.91 27.48
POSE (k=68) 41.04  60.59 26.39

Method Closed-Set Unseen Seed Unseen Architecture Unseen Dataset Unseen All
Accuracy AUC OSCR AUC OSCR AUC OSCR AUC OSCR
Base 90.68 62.02 60.58 76.03 72.92 77.01  73.88 73.78  70.97
Base+OpenMax [7] 91.11 63.27 61.60 76.40 73.29 7533 7232 73.50 70.70
Base+PROSER [5%] 92.12 63.32 62.19 79.55 76.57 81.43 78.64 7722  74.66
Base+ARPL+CS [7] 91.77 5494  54.17 79.09 75.97 80.48 77.52 75.08 7247
Base+DIAS [25] 92.77 62.15 61.02 79.34 76.49 84.14 81.13 78.00 75.41
Base+AM 93.41 66.17 65.04 82.21 79.42 85.04 82.20 80.31 77.80
Base+AM+L i, (POSE) 94.81 68.15 67.25 84.17 81.62 88.24 85.64 82.76  80.50

k = 68: the true number of classes for seen and unseen data
k = 49: the number of clusters that Girish et al. returns after four iterations.



Ablation Study

* The diversity loss increase the diversity of open space simulated by different augmentation
models, and reduces the open space risk better.

S cosedset | openset
Acc AUC OSCR

Base 90.68 73.78 70.97

Base+AM 93.41 80.31 77.80

Base+AM-+Ldiv 94.81 82.76 80.50



Ablation Study

* The diversity loss increase the diversity of open space simulated by different augmentation
models, and reduces the open space risk better.

N =

Acc AUC OSCR
Base 90.68 73.78 70.97
Base+AM 93.41 80.31 77.80
Base+AM+Ldiv 94.81 82.76 80.50

With L, the AUC increases continually until

about 19 epochs.
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models, and reduces the open space risk better.
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Ablation Study

» Ablation study on the architecture of augmentation models.

* Best option: only convolution layer, Layer number = 2, Kernel size = 3
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Visualization Examples

* The augmented data simulates a rich open space enclosing the known data points,
resulting in a clear better close/open discrimination.
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Summary

* Highlights
» Problem: A new task named open-set model attribution.
» Method: Simulate the potential open space progressively via lightweight augmentation models.
» Dataset: A dataset considering Seen Real, Seen Fake, Unseen Real, and three types of Unseen Fake.

» Evaluation: Superior than model attribution methods and off-the-shelf OSR methods.

» Code, dataset, and models are at https://github.com/ICTMCG/POSE

e Future Work

> Unified framework for architecture-level and model-level attribution.

» Model retrieval, model lineage analysis.



Thanks

Feel free to contact :
vangtianyun19z@ict.ac.cn

wangdanding@ict.ac.cn
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