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Motivation

* Young children, two to four years old, consume 2.5 hours of
online video per day on average.

* Watching appropriate educational videos supports healthy child
development and learning
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APPROVE Dataset

* Curated educational YouTube videos expert-annotated into 19 classes
(7 literacy codes, 11 math, and background)

193 hours
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Fine-Grained Education Code Labels

dot —-Ot pot
60;1 9ot ’e) : ¢ i .
sounds in words rhyming analyze compare bu11d1ng draw1ng
shape shapes
"»" ¢« o
A e 25

addition subtraction counting
(@) Framesfrom literacy videos (b) Framesfrom math videos (c) Framesfrom background videos

letter names letter sounds
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Challenges Addressed

* Fine-grained classification requires multi-modal understanding
e Supervised Contrastive Learning is limited to single label case
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Proposed Approach

Class Prototype Contrastive Learning solves two problems in one shot
1. Use of shared prototypes across modalities allows for alignment

* Features for video across modalities are pulled together
2. Generalizing Contrastive Learning to multi-label Setting can be

achieved through use of class prototypes
* Video features are attracted towards class prototypes of labels which are
present in the video and repelled from labels that are not present
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Multi-Label Contrastive Learning
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Results: APPROVE

Subset Modality Method

AUPR LRAP R@80

BCE 45.5 54.3 6.9

\Y Focal 45.9 56.6 15.0

Ours 46.7 57.9 19.6

BCE 79.8 85.1 63.3

All T Focal 79.9 85.7 72.8

Ours 82.5 87.4 75.4

BCE 84.3 88.4 76.3

V4T Focal [36] 86.1 89.1 82.2

Asym. [48] 86.0 89.2 82.4
Ours 88.4 +23 90.7 +1.5 85.5 +3.1

BCE 86.3 92.4 80.3

MTH V+T Focal 87.2 92.1 82.4
Ours 884 :+12 93.2 +1.1 83.2 +0.8

BCE 72.1 82.9 50.7

LIT V+T Focal 72.7 83.5 50.9
Ours 73.6 +09 84.7 +12 54.7 +3.8

Table 2. Results on APPROVE dataset. All metrics in %.
V—Video & T—Text. M— Math & L— Literacy Subsets.
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Results: YT-8M (1% subset)

Modality Method AUPR LRAP R@80

V+T BCE 64.6 70.2 42.3
V+T  Focal [36] 69.7 72.7 44.6
V+T Ours 70.9 12 74.9 +22 49.1 +45

Table 3. Results on YT-46K. V—Video Frames and T—Text.
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Results: COIN

Modality Method Top-1 Accuracy

V+T CE 53.7
V+T BCE 54.9
V+T Focal [36] 56.1
V+T  SupCon [27] 54.7
V+T Ours 57.5 +14

Table 4. Results on COIN. V—Video Frames and T— Text.



