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Highlights: training data search
from a source pool

Training set Target validation/test set
(unlabeled)

Source pool

Objective: create a small training set from source pool
but can train a model with high accuracy on target data



Highlights: results
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When the target is AlicePerson,
the searched training set (SnP) has
* higher accuracy than source pool

| * higher accuracy than each
individual dataset

* much more small scale in the
number of samples and IDs

>0 Source pool [
. SnP (Proposed)
S
> 40 1
©
= Market MSMT
S
— 301 T T e e e e e —————
_:éc Duke ! # identities
ad I
20 1 | 1K 7K 15K
PersonX :
N
T T T -_1-___1-___,7,}-___1__’
10 15 20 25 30 400

Number of training samples (x 103)



What most works are studying

model-centric

Constructing
Training set

Based on benchmarks like ImageNet, COCO, etc

T S

Model Modeling |—| Training

Test /

Evaluation on Validation set

IR
\ / i Deployment

Under a fixed source training and target validation,
Can we improve the training algorithm or model?




Suppose we hope to have a deep
learning system for a new target

* first half of time collecting/cleaning data

000

* The other half of time configuring your deep learning

network



What I'm going to talk about

data-centric

Constructing
Training set

Evaluation

Model
Modeling

Training

Evaluation

Tl -

Under a fixed target validation,
Can we improve the source training
data to improve target performance?

Test /
Deployment




Training data search:
from a source pool

Train directly?

Target validation/test set
(unlabeled)

Not a good idea:
 Time costly
 There could be a better choice

Source pool

7



Training data search:
from a source pool

Training set Target validation/test set
(unlabeled)

Source pool

Objective: create a small training set from source pool
but can train a model with high accuracy on target data



We may select training
from real training

Real training
and validation

Data comparison
B>D>C>A>E -——

A time-consuming process! validation st
Require validation labels!



It we can find a good training set
without real training
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More experiments
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Method: Search and Pruning (SnP)

~(A) Target-specific subset search
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Simple Pipeline: Search for target-specific subset; then Pruning for effici@nt tiaining



Labeled data from lots
of existing datasets

Cluster
merging
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Experiment
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SnP has

* higher accuracy than source
pool

* higher accuracy than each
individual dataset

* much more small scale in the
number of samples and IDs



Experiment

= Random sampling ~ Greedy Sampling mSnP
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SnP result in better training set than both greedy sampling and random sampling
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Conclusions and insights

* We study an interesting and unsolved problem:
Training set search for unlabeled target

* We use a very simple method:
Search and pruning framework

* Potential applications:
Object detection, semantic segmentation, etc.

Scan for paper and code Paper
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