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Highlights: training data search 
from a source pool

Training set

𝐒

Objective: create a small training set from source pool
but can train a model with high accuracy on target data
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Highlights: results
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When the target is AlicePerson, 

the searched training set (SnP) has

• higher accuracy than source pool

• higher accuracy than each 
individual dataset

• much more small scale in the 
number of samples and IDs
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What most works are studying
model-centric
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Based on benchmarks like ImageNet, COCO, etc  

Under a fixed source training and target validation,
Can we improve the training algorithm or model?



Suppose we hope to have a deep 
learning system for a new target

• first half of time collecting/cleaning data

• The other half of time configuring your deep learning
network
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What I’m going to talk about
data-centric

Under a fixed target validation, 
Can we improve the source training
data to improve target performance?
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Training data search: 
from a source pool

Train directly? 

Not a good idea:
• Time costly
• There could be a better choice
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Target validation/test set 
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Source pool
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Training data search: 
from a source pool

Objective: create a small training set from source pool
but can train a model with high accuracy on target data
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Training set

𝐒

Target validation/test set 
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Source pool

𝐓



We may select training 
from real training

validation set

Training set A, B, C, D, E

Data comparison

B ≻D ≻C ≻A ≻E

A time-consuming process!
Require validation labels!

Source pool
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Real training 
and validation

𝐓



If we can find a good training set 
without real training
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Negative correlation to 
the domain gap (FID)

Positive correlation to 
the dataset size

Jointly achieve best 
accuracy

Every point is a dataset

Person re-ID
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More experiments

Negative correlation to 
the domain gap (FID)

Positive correlation to 
the dataset size

Jointly achieve best 
accuracy

Every point is a dataset
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Vehicle re-ID
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Method: Search and Pruning (SnP)

Simple Pipeline: Search for target-specific subset; then Pruning for efficient training 
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Experiment
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SnP has

• higher accuracy than source 
pool

• higher accuracy than each 
individual dataset

• much more small scale in the 
number of samples and IDs
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Experiment
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Random sampling Greedy Sampling SnP

SnP result in better training set than both greedy sampling and random sampling
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• We study an interesting and unsolved problem:
Training set search for unlabeled target 

• We use a very simple method:
Search and pruning framework

• Potential applications:
Object detection, semantic segmentation, etc. 
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Conclusions and insights

Scan for paper and code CodePaper
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