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Generalization Problem of Denoising Networks

| Ours
b. Out-of-distribution

assian 15
a. In-distribution

SwinlR Ours

in-distribution noise: outstanding performance. out-of-distribution noise:
out-of-distribution noise: a huge performance drop. maintains a reasonable denoising effect



Motivation
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Training noise type: Gaussian noise
Training image type: Immunohistochemistry images

Testing image type: Natural image
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Reason for the poor generalization ability: the training method makes the model
focus on overfitting the training noise instead of learning the image reconstruction.

Instead, we want the model to
learn to reconstruct the texture and structure of the images, rather than focusing only on noise.



Method: Masked Training
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The Input Mask randomly masks out the feature tokens, and complete the masked information during training
— explicitly constructs a challenging inpainting problem.

The Attention Mask. There is inconsistency between training and testing, we can narrow the gap between
training and testing by performing the same mask operation during the self-attention process.



Experiments
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Figure 10. Performance comparisons on four noise types with different levels on the Kodak24 dataset [25]. All models are trained only
on Gaussian noise. Our masked training approach demonstrates good generalization performance across different noise types. We involve
multiple types and levels of noise in testing, the results cannot be shown here. More results are shown in the supplementary material.



Masked Training
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Figure 7. Visual comparison on out-of-distribution noise. When all other methods fail completely, our method is still able to denoise
effectively. Please refer to the supplementary material to see more visual results.



Generalization Analysis
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Figure 12. The testing curves on different noise types and levels.

The models are trained using only Gaussian noise.
Testing on other noise type.



Generalization Analysis

Feature Distribution
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Figure 14. The distribution of baseline model features is biased

across different noise types. Our method produces similar feature
distributions across different noise.
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