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Goal

« conventional approach models pairwise relationships among all
detected entities and helps constrain the reasoning to the
underlying semantic structure.

Conventional Approach
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Goal

* Move towards a generative model for scene graph generation
using a two-stage approach where we first sample the
underlying semantic structure between entities before predicate
classification.

---------------------

Entity Hypotheses '+ L, e mmmmmmm—ma-
_____ : ' Man Frisbee | \ Man Frisbee |
p % Window Playing : X Playing=—>
1
I L e pyilding ‘Window! : gl '
.................... 1Standing \Bullding Indow ! Standingon ) ildi
. Frisbee | 2 o \ A..;_—Has—’o I}—): g d"“""haBsu“dmg E
> 1 1 B 1
: Building ! : | X... : : \O :
- Q - ' @---- X====- 0 ! ; . '
=t : 1 Grass Window !
: mow ] :_gfa_s§ ___________ Tree | PR D R
' aale e 3 X
1Grass re . e y
Relation Hypotheses Relation Prediction Scene Graph Generation



Limitations of current approaches

* First, by modeling the interactions between entities with a dense
topology, the underlying semantic structure is ignored during
relational reasoning, which can lead to poor predicate classification.

« Second, by constructing pairwise relationships between all entities In
a scene, there Is tremendous overhead on the predicate
classification modules since the number of pairwise comparisons
can grow non-linearly with the number of detected concepts.

- Combined, these two Issues aggravate the existing long-tail
distribution problem in scene graph generation.

* Recent progress in unbiasing has attempted to address this issue by
tackling the long-tall distribution problem. However, they depend on
the quality of the underlying graph generation approaches which
suffer from the above limitations.



Contributions

* The contributions of this paper are three-fold:

1.

we are among the first to tackle the problem of scene graph generation
using a graph generative approach without constructing expensive,
pairwise comparisons between all detected entities

we propose the idea of iterative interaction graph generation and global,
contextualized relational reasoning using a two-stage transformer-based
architecture for effective reasoning over cluttered, complex semantic
structures

through extensive evaluation on Visual Genome, we show that the
proposed approach achieves state-of-the-art performance (without
unbiasing) across all three scene graph generation tasks while considering
only 20% of all possible pairwise edges using an effective graph sampling
approach.



How do we do it?

Concept Grounding
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Scene Graph Generation

We first ground the concepts in the image data and use a generative
transformer decoder network to sample an entity interaction graph
before relation or predicate classification using a transformer-based
contextualization mechanism for efficient scene graph generation.



Iterative Interaction Graph Generation
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Evaluation Setup

* Data. We evaluate our approach on Visual Genome. FoIIowinE prior works, we
use the standard scene graph evaluation subset containing 108k images with 150
object (entity) classes sharing 50 types of relationships (predicates).

* Tasks. We evaluate our approach on three standard scene graph generation tasks
- predicate classification (PredCls), scene graph classification (SGCls), and scene
graph generation (SGDet).

* In PredCls, the goal is to generate the scene graph, given ground truth entities and
localization
* In SGCls, the goal is to generate the scene graph, given only entity localization.

* In SGDet, only the input image is provided, and the goal is to generate the scene graph along
with the entity localization.

* Metrics. We report the mean recall (mMR@K) metric, since the recall has shown to
be biased towards predicate classes with larger amounts of training. We report
across different values of K=(50,100). We also report the zero-shot recall to
evaluate the generalization capabilities of the SGG models.



Comparison with state-of-the-art

Aoproach PredCls SGCls SGDet Average | Average
PP mR@50 | mR@100 | mR@50 | mR@100 | mR@50 | mR@100 | mR@100 | mR@50
FC-SSG [17] 6.3 7.1 3.7 4.1 36 4.2 4.5 5.1
a0 IMP [*7] 9.8 10.5 5.8 6.0 38 4.8 7.1 6.5
E MOTIFS [7] 14.0 15.3 7.7 8.2 5.7 6.6 10.0 9.1
-‘E‘ VCTree [ 1] 17.9 19.4 10.1 10.8 6.9 8.0 12.7 11.6
5 KERN [7] - 19.2 - 10 - 73 12.2 -
s R-CAGCN [ 7] - 19.9 - 11.1 - 8.8 13.3 -
% Transformer [ ] - 17.5 - 10.2 - 8.8 12.2 -
E Relationformer [ 1] - - - - 93 10.7 - -
RelTR [ ] 21.2 - 11.4 - 8.5 - - 13.7
| | IS-GGT (Ours) | 264 | 319 | 158 | 189 | 91 | 113 | 207 | 171 |
| | RU-Net [ ] | - | 242 | - | 146 | - | 108 | 165 | - |
IMP+EBML [ 7] 11.8 12.8 6.8 7.2 4.2 54 8.46 7.6
VCTree+EBML [ 7] 18.2 19.7 12.5 13.5 7.7 0.1 14.1 12.8
MOTIFS+EBML [ 7] 18.0 19.5 10.2 11 7.7 0.1 13.2 12.0
1%‘” MOTIFS+TDE [ ] 25.5 29.1 13.1 14.9 8.2 9.8 17.9 15.6
E VCTree+TDE [2V] 254 28.7 12.2 14 9.3 11.1 17.9 15.6
=
5 | MOTIFS+CogTree [ /] 26.4 29 14.9 16.1 10.4 11.8 19.0 17.2
£ VCTree+CogTree [ /] 27.6 29.7 18.8 19.9 10.4 12.1 20.6 18.9
= IMP+PPDL [ 7] 24 .8 253 14.2 159 9.8 10.4 17.2 16.2
MOTIFS+PPDL [ | ] 32.2 33.3 17.5 18.2 114 13.5 21.7 20.4
VCTree+PPDL [ 7] 333 33.8 21.8 224 113 14.4 235 2.1
| BGNN [ 7] | 304 | 329 | 143 | 165 | 107 | 126 | 207 | 185 |
] PCPL [ ] | 352 | 378 | 186 | 196 | 95 | 17 | 230 | 211 |

We consistently outperform all models that do not use unbiasing and some early unbiasing models across all three tasks while
offering competitive performance to current state-of-the-art unbiasing models. Approaches outperforming the proposed IS-GGT are

underlined.



Zero-shot evaluation

Aonroach PredCls SGCls SGDet Mean
PPTOAc R@{20/50} | zR@{20/50} | zZR@{20/50} | zR@{20/50}
VCTree [11] 1.4/4.0 0.4/1.2 0.2/0.5 07/19
MOTIFS [7] 1.3/3.6 0.4/0.8 0.0/ 0.4 0.6/1.7
FC-SGG [ ] 119 1.7 0.9 3.5
VCTree + EBML [ 7] 23/54 0.9/19 0.2/0.5 1.1/26
MOTIFS + EBML [ ] | 2.1/49 0.5/13 0.1/0.2 09/2.1
IS-GGT (Ours) 50/83 1.4/2.6 1.0/1.3 2.5/4.1

Zero-shot evaluation on Visual Genome. We report the recall@20 and recall@50 for fair comparison. It can be seen that we outperform
approaches with and without unbiasing. Specifically, we obtain and average zero-shot recall of 2.2 (at K=20) and 4.0 (at K{=}50), which is
more than 2x the performance of comparable models without unbiasing such as VCTree and MOTIFS while also outperforming the
comparable FC-SGG across all three tasks.



Impact of Generative Graph Sampling
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We greatly reduce the number of pairwise comparisons made for scene graph generation. Using only 200 edges (i.e., Approximately
20% of all edges), we outperform most state-of-the-art approaches on the mean mR@100 across all tasks.



Qualitative Visualization

Scene Graph Detection

@d‘ng 1 Building 2 Window 1 \ ﬁow 1 Snow 2 Building 1 \
O_"’L) ( ) Coven'ggi ( ) ¢ Coveredin [~

Trn 1

Behmd
Bmy >
In frontof ,‘

Fence 1 Mﬂﬂ%‘m 1 Woarjy‘g xm.-.g I
() () () ()
& sgh/’ sm“ "“d ' &"“1 Shoe 2 Jacket 1 naﬁ'dy
(a) (b)

Behind

Predicate Classification with Zero-Shot Edges Predicate Classification
I a ™
Chair  Vase  Flower Lear any
';: Gmwsoy in front %Q
O =g | ™%
Leg oor Handle \ Leaf 2 Lamp/




	Slide 1: Iterative Scene Graph Generation with Generative Transformers
	Slide 2: Scene Graphs
	Slide 3: Goal
	Slide 4: Goal
	Slide 5: Limitations of current approaches
	Slide 6: Contributions
	Slide 7: How do we do it?
	Slide 8: Iterative Interaction Graph Generation
	Slide 9: Evaluation Setup
	Slide 10: Comparison with state-of-the-art
	Slide 11: Zero-shot evaluation
	Slide 12: Impact of Generative Graph Sampling
	Slide 13: Qualitative Visualization

