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The person was 
doing a cool walk.
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↓

MLD requires less computational overhead (horizontal axis to the left), which is two 
orders of magnitude faster than other diffusion model-based methods, and has better 
motion quality (vertical axis to the bottom)

Quantitative Comparison



2. Diffusion models on raw motion

Prior Work

1. Unified hidden space

[TEMOS: Petrovich et al. ECCV 2022]

Limited to highly different distributions

High computational complexity

Susceptible to artifacts

[MDM: Tevet et al. ICLR 2023]
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VAE

Learning latent motion 
representation 
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2. Reduce the effect of noise in the raw data

3. Reducing the amount of data facilitates the computational 
cost of learning subsequent text-to-action mappings

Advantages



Diffusion Model

Motion Encoder

Condition Inputs

skip connection

forward trajectory

reverse trajectory

concat embedding

T iterative steps

Latent

Motion Decoder

Motion Representation in Latent

a person walks four steps,
turns to left and 

walks another two steps.

Text Action
walk Null

1. Vivid motions matching conditions

2. Reduced computational overhead

Learning probabilistic mappings 
from input conditions (text, label, 
etc.) to hidden representation

Latent Diffusion

Advantages
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“walking forward with 
legs wide apart.”
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“the person was 
doing a cool walk”

Comparison



GT

MDM

T2M

Ours

GT

MDM

T2M

Ours

GT

MDM

T2M

Ours

Text-to-Motion

“a person walks forward, 
turns, then sits, then stands 

and walks back”

Comparison
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“Drink”

Comparison
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Quantitative Comparison

Performance on text-to-motion generation tasks

Performance on action-to-motion generation tasks



Text-to-Motion

“A person doing 
jumping jacks.”

“A person walks in 
a circle to their right.”

“A person jumps forwards 
and turns left in mid air”

More Results



“Throw”

“Throw”“Boxing”

“Eat”

“Eat”

Action-to-MotionMore Results

“Boxing”



UnconditionedMore Results



Thanks for Watching!
Executing your Commands via Motion Diffusion in Latent Space

More details please check our paper and project

Project Paper Code


