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Summary:
Methane gas detection from Airborne Hyperspectral Imagery
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Main
Contributions:

* We introduce a novel single-stage
end-to-end approach for methane
plume detection using a
hyperspectral transformer

* Largest public hyperspectral
dataset - Methane HotSpot
(MHS) dataset

* Flightlines data from 6
different states over a time
period of 8 years
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Motivation

;;Sset top
e Greenhouse gas emissions are the pub,,.s,):OerMa"c:,;szssgbn of
invisible menace causing global n e s, turp CI""ateSpend_
warming ‘ng

e Methane and Carbon Dioxide goes
undetected because of invisibility

e Government is struggling to curb on
these emissions

e US govt. set to pass $369 billions
towards climate change
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1/3"d of Gas Comes
from Dairy Farms and
Livestocks

1/3d of Gas Comes
from Oil and Gas
Industry

16% of Gas comes
from Landfill sites

of Methane
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Methane gas detection from Airborne Hyperspectral Imagery

400nm

Y

AVIRIS-NG

432 bands

12



Conventional Detection Methods

e |terative Maximum a Posterior Differential Optical Absorption
Spectroscopy (IMAP-DOAS) algorithm

o Uses Lambert-Beer law to model the absorption of solar radiation in the
medium it is passing through
o Highly dependent on pressure and temperature of the atmosphere
e Matched Filter

o Uses background statistics to normalize the spectral signals and match with the
methane spectral signature at every spatial location (pixel-wise)

Highly prone to false positives due to confusers on the
ground such as hydrocarbon paints, roads, etc
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Conventional Detection Methods
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Deep Learning based approach

e MethaNet An Al-driven approach to quantifying methane point-source

emission from high-resolution 2-D plume imagery [6]
o A shallow neural network with 4 layers for methane quantification

MethaNet only works with a corrected and clean
methane enhancement output from matched filter

Very limited datasets available with ground truth

[5] Kumar, Satish, "Deep remote sensing methods for methane detection in overhead hyperspectral imagery." IEEE/CVF Winter Conference on Applications of Computer Vision. 2020 (WACV).
[6] "MethaNet—An Al-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery." Remote Sensing of Environment 269 (2022): 112809.

15



Outline




Methane HotSpot (MHS) Dataset

2

Collected concentration patches from a non-profit
entity

Mapped all patches to AVIRIS-NG flightlines

Created point source and diffused source plume
sites

The concentration patches verified by experts
visiting the physical location
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Dataset Statistics

Dataset MHS JPL-CH4
Dataset detection-V1.0
# plume sites 3961 161
# flightlines 1185 46
# point source 3675 114
# diffused source 286 57
Time period 2015 - 2022 2015
( 8 years) ( 1 year)

Segmentation Mask Yes Yes
Bonding box Yes No
Concentration map Yes No
Number of Regions 6 1
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We built MethaneMapper

A spectral absorption aware hyperspectral transformer
architecture for methane plume detection in
hyperspectral imagery
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We built MethaneMapper
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A transformer-based methane detection architecture with Spectral Linear Filter
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We built MethaneMapper
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We built MethaneMapper
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Processes the 432 bands hyperspectral image to generate methane candidate maps
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We built MethaneMapper
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We built MethaneMapper
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The refined queries narrow down the search space of the transformer decoder to
locate the methane plumes and help to remove the false positives
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MethaneMapper: Spectral Linear Filter (SLF)

SLF filters’ out the background noise based on the spectral absorption properties
of reflected solar radiations by methane gas

Absorption of solar reflected radiation by methane is modeled as additive
perturbation: X, =1, +t

where r;is the i pixel in the hyperspectral image representing ground
terrain, and t is the methane absorption pattern




MethaneMapper: Spectral Linear Filter (SLF)

The methane absorption pattern “t” is shown below
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MethaneMapper: Spectral Linear Filter (SLF)

Since our signature of interest is very weak in the X;, we do a dot product with
vector . This vector a is called “matched filter” :
Cov 't

Vil Cov 't

=

where Cov-lis the inverse of covariance of the background when no
methane is present. The methane enhancement per pixel is computed as:
(x; — 1) 'Cov 't

VitlCov 1t

where a(x;) is the per pixel estimation of methane

(A}(XJ) =




MethaneMapper: Spectral Linear Filter (SLF)

The Covlin previous step is computed with an underlying assumption that the ground
terrain does not change much, BUT it is not the case,
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MethaneMapper: Spectral Linear Filter (SLF)

We did a simple land cover classification of the ground terrain and then compute Cov,*!

for each class k. SLF(x)) = (x; — 1) Cov;. 1

V (i) € class k

/1T Cov, 't

Traditional Matched Filter Spectral Linear Filter Ground Mask
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MethaneMapper: Quantitative Performance

Method
MHS (Ours) data) e
ISpectralformer [0] | 033 | 041 |
UPSnet (stuff) [10] 0.32 | 0.38
UPSnet (things+stuff )[10] 029 | 0.35
U-net [11] 0.35 0.46
DETR-RI18[12] 0.37 | 0.56
DETR-R50[12] 0.44 | 0.59
MM-R18 + Matched Filter 0.45 | 0.60
MM-R18 + Spectral Linear Filter 0.52 | 0.63
MM-R50 + Spectral Linear Filter | 0.59 0.68

[8] Kumar, Satish, “MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for Methane Detection”, IEEE/CVF (CVPR 2023)

[7] Kumar, Satish, "Deep remote sensing methods for methane detection in overhead hyperspectral imagery." IEEE/CVF Winter Conference on Applications of Computer Vision. 2020 (WACV 2020).
[9] "SpectralFormer: Rethinking hyperspectral image classification with transformers." IEEE Transactions on Geoscience and Remote Sensing 60 (2021):

[10] "Upsnet: A unified panoptic segmentation network." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[11] U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich

[12] Carion, Nicolas, et al. "End-to-end object detection with transformers." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020



MethaneMapper: Quantitative Performance

Method
MHS (Ours) data) e
SpectralFormer [9] 0.33 0.41
UPSnet (stuff) [10] 0.32 | 0.38
UPSnet (things+stuff )[10] 029 | 0.35
U-net [11] 0.35 0.46
DETR-RI18[12] 0.37 | 0.56
DETR-R50[17] 0.44 | 0.59
- + Matched Fllter 0.45 | 0.00 |
MM-R18 + Spectral Linear Filter 0.52 | 0.63
MM-R50 + Spectral Linear Filter | 0.59 0.68

[8] Kumar, Satish, “MethaneMapper: Spectral Absorption aware Hyperspectral Transformer for Methane Detection”, IEEE/CVF (CVPR 2023)

[7] Kumar, Satish, "Deep remote sensing methods for methane detection in overhead hyperspectral imagery." IEEE/CVF Winter Conference on Applications of Computer Vision. 2020 (WACV 2020).
[9] "SpectralFormer: Rethinking hyperspectral image classification with transformers." IEEE Transactions on Geoscience and Remote Sensing 60 (2021):

[10] "Upsnet: A unified panoptic segmentation network." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[11] U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich

[12] Carion, Nicolas, et al. "End-to-end object detection with transformers." Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020
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MethaneMapper: Conclusion

We provide an end-to-end approach with high quality methane plume detection and provide the computer vision
community with largest hyperspectral dataset to promote research in this field
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