CVPR 2024 Tutorial

Learning Deep Low-Dim Models from High-Dim Data: From Theory to Practice

Lecture 1-2: Understanding Deep Representation Learning via Neural Collapse

> Sam Buchannan, Yi Ma, Qing Qu Yaodong Yu, Yuqian Zhang, Zhihui Zhu

> > June 18, 2024

This Tutorial: The Outline

Session 1: Understanding Low-D Representations in Deep Networks

- Lecture 1-1: Introduction to Basic Low-D Models
- *•* Lecture 1-2: Understanding Low-D Representation via Neural Collapse
- *•* Lecture 1-3: Invariant Low-D Subspaces of Learning Dynamics

Session 2: Designing Deep Networks for Pursuing Low-D Structures

• Lecture 2-1: Representation Learning via the Principle of Compression

- *•* Lecture 2-2: White-Box Architecture Design via Unrolled **Optimization**
- *•* Lecture 2-3: White-Box Transformers via Sparse Rate Reduction

Classical Low-dimension Model: GPCA

• Generalized PCA for mixture of subspaces [Vidal, Ma, Sastry 2005]

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 3/65

Classical Low-dimension Model: GPCA

Understand and interacte with the physical world \implies nonlinear data Coping with nonlinearity demands (deeper) representation

4 D F

 \rightarrow \equiv \rightarrow

Historical Context: Quest for Image Representation I

- *•* Suitable representation is important to the performance
- *•* Classical design requires domain knowledge

Historical Context: Quest for Image Representation II

Deep learning builds multiple level of abstractions

- *•* Learn representation from data by back-propagation
- *•* Reduce domain knowledge and feature engineering
- *•* Progressively "linearize" the nonlinear structure

The objective of learning:

Transform nonlinear and complex data to a linear, compact and structured representation.

- *•* Empirically observe across many architectures and dataset
- Theoretically justify for simple models
- *•* Lead to principled ways for designing architectures to pursue Low-D structures

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 7 / 65

The South Book

◆ ロ ▶ → 何 ▶ →

Outline

1 [Neural Collapse \(NC\) Phenomena](#page-7-0)

2 [Understanding NC from Optimization](#page-24-0)

³ [Prevalence of NC under Di](#page-51-0)fferent Training Scenarios

4 [Conclusion](#page-82-0)

Multi-Class Image Classification Problem

• Goal: Learn a deep network predictor from a labelled training dataset $\{(x_{k,i}, y_k)\}; i = 1, \cdots, n, k = 1, \cdots, K\}.$

 1 If not, we can use data augmentation to make them [ba](#page-7-0)l[an](#page-9-0)[ce](#page-7-0)[d](#page-8-0) Ω

Multi-Class Image Classification Problem

- *•* Goal: Learn a deep network predictor from a labelled training dataset $\{(x_{k,i}, y_k)\}; i = 1, \cdots, n, k = 1, \cdots, K\}.$
- *•* Training Labels: *k* = 1*,...,K*
	- \bullet $K = 10$ classes (MNIST, CIFAR10, etc)
	- $K = 1000$ classes (ImageNet)

 1 If not, we can use data augmentation to make them [ba](#page-8-0)l[an](#page-10-0)[ce](#page-7-0)[d](#page-8-0) Ω

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 8 / 65

Multi-Class Image Classification Problem

- *•* Goal: Learn a deep network predictor from a labelled training dataset $\{(x_{k,i}, y_k)\}; i = 1, \cdots, n, k = 1, \cdots, K\}.$
- *•* Training Labels: *k* = 1*,...,K*
	- \bullet $K = 10$ classes (MNIST, CIFAR10, etc)
	- $K = 1000$ classes (ImageNet)

• For simplicity, we assume balanced dataset where each class has *n* training samples. $¹$ </sup>

 1 If not, we can use data augmentation to make them [ba](#page-9-0)l[an](#page-11-0)[ce](#page-7-0)[d](#page-8-0) Ω

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 8 / 65

• A vanilla deep network:

$$
f_\Theta(x) \;=\; \underbrace{W_L}_{\text{linear classifier } W} \underbrace{\sigma\left(W_{L-1}\cdots \sigma(W_1x + b_1) + b_{L-1}\right)}_{\text{feature }\phi_\theta(x) =: h} + b_L
$$

4 0 8

4 何 ≯ 4

э

• A vanilla deep network:

$$
f_{\Theta}(x) \;=\; \underbrace{W_L}_{\text{linear classifier } W} \underbrace{\sigma\left(W_{L-1}\cdots \sigma(W_1x + b_1) + b_{L-1}\right)}_{\text{feature }\phi_\theta(x) =: h} + b_L
$$

• Progressive linear separation through nonlinear layers [Naitzat et al. 2020]

Barat Bar

4 母 ト 4

4日下

• Training a deep neural network:

$$
\min_{\boldsymbol{\theta}, \boldsymbol{W}, \boldsymbol{b}} \frac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \underbrace{\mathcal{L}_{\text{CE}}\big(\boldsymbol{W} \phi_{\boldsymbol{\theta}}(\boldsymbol{x}_{k,i}) + \boldsymbol{b}, \boldsymbol{y}_k\big)}_{\text{cross-entropy (CE) loss}} + \lambda \underbrace{\|(\boldsymbol{\theta}, \boldsymbol{W}, \boldsymbol{b})\|_F^2}_{\text{weight decay}}
$$

4 D F

ミメスミメ

Þ

Neural Collapse in Multi-Class Classification

Prevalence of neural collapse during the terminal phase of deep learning training

Vardan Papyan, 2 X. Y. Han, and David L. Donoho

+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020; https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and Stéphane Mallat)

- *•* Reveals common outcome of learned features and classifiers across a variety of architectures and dataset
- Precise mathematical structure within the f[ea](#page-14-0)t[ur](#page-16-0)[e](#page-14-0)[s a](#page-15-0)[n](#page-16-0)[d](#page-6-0) [c](#page-23-0)[l](#page-24-0)[as](#page-6-0)[s](#page-7-0)[i](#page-23-0)[fi](#page-24-0)[er](#page-0-0)

Neural Collapse in Multi-Class Classification

Credit: Han et al. Neural Collapse Under MSE Loss: Proximity to and Dynamics on the Central Path. ICLR, 2022.

э

• NC1: Within-Class Variability Collapse: features of each class collapse to class-mean with zero variability:

 k -th class, *i*-th sample : $\boldsymbol{h}_{k.i} \rightarrow \boldsymbol{\overline{h}}_k$,

 QQ

ヨメ イヨメ

• NC1: Within-Class Variability Collapse: features of each class collapse to class-mean with zero variability:

> \boldsymbol{h}_3 \overline{h}_1

 k -th class, *i*-th sample : $\boldsymbol{h}_{k.i} \rightarrow \boldsymbol{\overline{h}}_k$,

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF): the class means are linearly separable, and maximally distant

$$
\frac{\langle \overline{\mathbf{h}}_k, \overline{\mathbf{h}}_{k'} \rangle}{\|\overline{\mathbf{h}}_k\| \|\overline{\mathbf{h}}_{k'}\|} \to \begin{cases} 1, & k = k'\\ -\frac{1}{K-1}, & k \neq k' \end{cases}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF): the class means are linearly separable, and maximally distant

$$
\overline{\mathbf{H}}^{\top} \overline{\mathbf{H}} \sim \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}, \n\overline{\mathbf{H}} = \begin{bmatrix} \overline{\mathbf{h}}_1 & \cdots & \overline{\mathbf{h}}_K \end{bmatrix}
$$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

- For any *K* unit-length vectors u_1, \ldots, u_K in \mathbb{R}^d (with $d > K 1$), then $\max_{k\neq k'}\langle \boldsymbol{u}_k,\boldsymbol{u}_{k'}\rangle\geq -\frac{1}{K-1}$ and the minimum is achieved when they form a simplex ETF [Rankin'55].
- *•* The simplest case of the Optimal Packings on Spheres, or the Tammes problem.
- *•* Proof:

$$
0 \leq \big\|\sum_{k=1}^K \boldsymbol{u}_k\big\|_2^2 \leq K + K(K-1)\max_{k\neq k'} \langle \boldsymbol{u}_k, \boldsymbol{u}_{k'} \rangle
$$

$$
\implies \max_{k\neq k'} \langle \boldsymbol{u}_k, \boldsymbol{u}_{k'} \rangle \geq -\frac{1}{K-1}
$$

achieves equality when $\sum_{k=1}^{K} \boldsymbol{u}_k = 0$ and $\langle \boldsymbol{u}_k, \boldsymbol{u}_{k'} \rangle = -\frac{1}{K-1}, \forall k \neq k'$

KOD KOD KED KED DAR

• NC3: Convergence to Self-Duality: the last-layer classifiers are perfectly matched with the class-means of features

$$
\frac{\boldsymbol{w}_k}{\|\boldsymbol{w}_k\|} \rightarrow \frac{\overline{\boldsymbol{h}}_k}{\|\overline{\boldsymbol{h}}_k\|},
$$

where w_k represents the k -th classifier (i.e., k -th row of W).

Understanding the Prevalence of Neural Collapse

Question. Given the prevalence of Neural Collapse across datasets and network architectures, why would such a phenomenon happen in training overparameterized networks?

Outline

1 [Neural Collapse \(NC\) Phenomena](#page-7-0)

2 [Understanding NC from Optimization](#page-24-0)

³ [Prevalence of NC under Di](#page-51-0)fferent Training Scenarios

(ロ) (御) (君) (君) (君) 君 のぬの

4 [Conclusion](#page-82-0)

Dealing with a Highly Nonconvex Problem

The training problem is highly **nonconvex** [Li et al.'18]:

$$
\min_{\boldsymbol{\theta}', \boldsymbol{W}, \boldsymbol{b}} \frac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathcal{L}_{\text{CE}} \big(\boldsymbol{W} \phi_{\boldsymbol{\theta}'}(\boldsymbol{x}_{k,i}) + \boldsymbol{b}, \boldsymbol{y}_k \big) + \lambda \|(\boldsymbol{\theta}', \boldsymbol{W}, \boldsymbol{b})\|_F^2,
$$

due to the fact that the network

$$
f_\Theta(\mathbf{x}) \ = \ \underbrace{W_L}_{\text{linear classifier } W} \underbrace{\sigma \left(W_{L-1} \cdots \sigma (W_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_{L-1} \right)}_{\text{feature } \phi_\theta(\mathbf{x}) =: h} + b_L
$$

- *•* Nonlinear interaction across layers.
- *•* Nonlinear activation functions.

イロト イ押 トイヨ トイヨ トー

The Trend of Large Models...

Parameters (M)

Figure: Accuracy vs. model size for image classification on ImageNet dataset

 $~23$ million

 $~1$ million

(# Parameters in ResNet-50)

(# Samples in ImageNet)

 \leftarrow \Box

 \leftarrow \overline{m} \rightarrow

In principle, deep network can fit any training labels!

(i.e., not only clean, but also corrupted labels)

ミドマミド

Þ

 $\boldsymbol{\mathsf{Assumption.}}\; \mathsf{We \; treat}\; \boldsymbol{H} = \begin{bmatrix} \boldsymbol{h}_{1,1} & \cdots & \boldsymbol{h}_{K,n} \end{bmatrix}$ as a free optimization variable, ignoring the constraint $h\phi_{\theta}(x)$.

ミドマミド

 $\boldsymbol{\mathsf{Assumption.}}\; \mathsf{We \; treat}\; \boldsymbol{H} = \begin{bmatrix} \boldsymbol{h}_{1,1} & \cdots & \boldsymbol{h}_{K,n} \end{bmatrix}$ as a free optimization variable, ignoring the constraint $h\phi_{\theta}(x)$.

• **Validity:** modern network are highly overparameterized, that they are universal approximators [Shaham'18];

 $\boldsymbol{\mathsf{Assumption.}}\; \mathsf{We \; treat}\; \boldsymbol{H} = \begin{bmatrix} \boldsymbol{h}_{1,1} & \cdots & \boldsymbol{h}_{K,n} \end{bmatrix}$ as a free optimization variable, ignoring the constraint $h\phi_{\theta}(x)$.

- **Validity:** modern network are highly overparameterized, that they are universal approximators [Shaham'18];
- *•* State-of-the-Art: also called Layer-Peeled Model [Fang'21], existing work [E'20, Lu'20, Mixon'20, Fang'21] only studied global optimality conditions;

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, MLP with varying network widths

 \leftarrow \Box

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, MLP with varying network widths

- *•* Validity of unconstrained features model: Learn NC last-layer features and classifiers for any inputs
- *•* The network memorizes training data in a very special way: NC
- We observe similar results on **random inputs (random pixels)**

 \leftarrow \Box

Geometric Analysis of Global Landscape

$$
\min_{\bm{W}, \bm{H}, \bm{b}} \frac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathcal{L}_{\text{CE}}(\bm{W}\bm{h}_{k,i} + \bm{b}, \bm{y}_k) + \frac{\lambda_{\bm{W}}}{2} \|\bm{W}\|_F^2 + \frac{\lambda_{\bm{H}}}{2} \|\bm{H}\|_F^2 + \frac{\lambda_{\bm{b}}}{2} \|\bm{b}\|_2^2
$$

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.'21)

Let feature dimension d is larger than the class number K, i.e., d>K. Consider the above nonconvex optimization problem w.r.t. (*W, H*)*. Then*

Global optimality: Any global solution $({H^{\star}, W^{\star}, b^{\star}})$ obeys *Neural Collapse, with* $b^* = 0$ *and*

$$
\underbrace{\boldsymbol{h}_{k,i}^{\star} = \overline{\boldsymbol{h}}_k^{\star}}_{\text{NC1}}, \quad \underbrace{\frac{\langle \overline{\boldsymbol{h}}_k^{\star}, \overline{\boldsymbol{h}}_{k'}^{\star} \rangle}{\|\overline{\boldsymbol{h}}_k^{\star}\| \|\overline{\boldsymbol{h}}_{k'}^{\star}\|} = \begin{cases} 1, & k = k' \\ -\frac{1}{K-1}, & k \neq k' \end{cases}}_{\text{NC2}}, \quad \underbrace{\frac{\boldsymbol{w}_{k \star}}{\|\boldsymbol{w}_{k \star}\|} = \frac{\overline{\boldsymbol{h}}_k^{\star}}{\|\overline{\boldsymbol{h}}_k^{\star}\|}}
$$

Geometric Analysis of Global Landscape

[Lu et al.'20] study the following one-example-per class model

$$
\min_{\{\boldsymbol{h}_k\}} \frac{1}{K}\sum_{k=1}^K \mathcal{L}_{\text{CE}}\big(\boldsymbol{h}_k,\boldsymbol{y}_k\big), \text{ s.t.} \|\boldsymbol{h}_k\|_2 = 1
$$

[E et al.'20, Fang et al.'21, Gral et al.'21, etc.] study constrained formulation

$$
\min_{\{\bm{h}_{k,i}\},\bm{W}} \frac{1}{K n} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{\text{CE}}\big(\bm{W}\bm{h}_{k,i},\bm{y}_{k}\big), \text{ s.t. } \|\bm{W}\|_{F} \leq 1, \|\bm{h}_{k,i}\|_{2} \leq 1
$$

These work show that any global solution has NC, but

- What about local minima/saddle points?
- *•* The constrained formulations are not aligned with practice

Global Optimitality Does Not Imply Efficient Optimization

"flat" saddle point

€⊡

Our loss is still highly nonconvex:

$$
\min_{\bm{W}, \bm{H}, \bm{b}} \frac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathcal{L}_{\text{CE}}(\bm{W}\bm{h}_{k,i} + \bm{b}, \bm{y}_k) + \frac{\lambda_{\bm{W}}}{2} \|\bm{W}\|_F^2 + \frac{\lambda_{\bm{H}}}{2} \|\bm{H}\|_F^2 + \frac{\lambda_{\bm{b}}}{2} \|\bm{b}\|_2^2
$$

 200
Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.'21)

Let feature dimension d is larger than the class number K *, i.e.,* $d > K$ *. Consider the above nonconvex optimization problem w.r.t.* (*W, H*)*. Then*

- *•* Global optimality: *Any global solution* (*{H*?*,W*?*, ^b*?*}*) *obeys Neural Collapse.*
- *•* Benign global landscape: *The objective function* (*i*) *has no spurious local minima, and* (*ii*) *any non-global critical point is a strict saddle with negative curvature.*

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.'21)

Let feature dimension d is larger than the class number K , i.e., $d > K$. *Consider the above nonconvex optimization problem w.r.t.* (*W, H*)*. Then*

- *•* Global optimality: *Any global solution* (*{H*?*,W*?*, ^b*?*}*) *obeys Neural Collapse.*
- *•* Benign global landscape: *The objective function* (*i*) *has no spurious local minima, and* (*ii*) *any non-global critical point is a strict saddle with negative curvature.*

Message. Iterative algorithms such as (stochastic) gradient descent will always learn Neural Collapse features and classifiers.

イロト イ母ト イヨト イヨト

э

Implications of Our Results

General nonconvex problems

Our training problem

• A feature learing perspective.

- **•** Top down: unconstrained feature model, representation learning, but no input information.
- **Bottom up:** shallow network, strong assumptions, far from practice.

Implications of Our Results

General nonconvex problems

Our training problem

• A feature learing perspective.

- *•* Top down: unconstrained feature model, representation learning, but no input information.
- **Bottom up:** shallow network, strong assumptions, far from practice.
- *•* Connections to empirical phenomena.

Implications of Our Results

$$
\min_{\{\bm{h}_{k,i}\},\bm{W},\bm{b}} \frac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathcal{L}_{\text{CE}}(\bm{W}\bm{h}_{k,i}+\bm{b},\bm{y}_k) + \lambda \|(\{\bm{h}_{k,i}\},\bm{W},\bm{b})\|_F^2 \quad (1)
$$

- Closely relates to **low-rank matrix factorization** problems [Burer et al'03, Bhojanapalli et al'16, Ge et al'16, Zhu et al'18,Li et al'19, Chi et al'19]
- However, we have more structured observation

$$
\boldsymbol{Y} = \begin{bmatrix} 1 & \cdots & 1 \\ & & 1 & \cdots & 1 \\ & & & 1 & \cdots & 1 \end{bmatrix} = \boldsymbol{I}_K \otimes \boldsymbol{1}_n^\top
$$

Experiments on Practical Neural Networks

Conduct experiments with **practical networks** to verify our findings:

Use a Residual Neural Network (ResNet) on CIFAR-10 Dataset:

- $K = 10$ classes
- *•* 50K training images
- *•* 10K testing images

 \leftarrow \Box

 \Rightarrow Þ

Experiments: NC is Algorithm Independent

ResNet18 on CIFAR-10 with different training algorithms

- *•* The smaller the quantities, the severer NC
- NC is prevalent across different training algorithms

イロトラ 河 トラ モトラ モト

Ξ

 Ω

Related Works on NC

A non-comprehensive overview of related work on the analysis and application of NC

- Theoretical analysis of NC
	- Unconstrained features model
	- Deep unconstrained features model Tirer & Bruna'22, Súkeník et al.'24]
	- Loss design
		- CE loss
		- " MSE loss [Han et al.'22, Zhou et al.'22]
		- Supervised contrastive [Graf et al'21]
	- Multi-label learning [Li et al'24]
	- Large number of classes [Liu et al'23]
	- **Progressive NC** [Wang et al.'23]

– etc.

- Applications for understanding & improving network performance
	- Efficient training
	- Transfer learning [Galanti et al.'22, Li et al.'22]
	- Imbalanced learning [Fang et al.'21]
	- Continual learning [Yang et al.'23]
	- Differential privacy [Wang et al'24]
	- Robustness [Su et al'23]

4 **E** F

- Generalization [Hui et al'22]
- Feature learning in intermediate layers [He & Su'23, Rangamani et al.'23]
- etc.

NC is prevalent, and classifier always converges to a Simplex ETF

- *•* Implication 1: No need to learn the classifier [Hoffer et al. 2018]
	- Just fix it as a Simplex ETF
	- Save 8% , 12% , and 53% parameters for ResNet50, DenseNet169, and ShuffleNet!

Barat Bar

NC is prevalent, and classifier always converges to a Simplex ETF

- *•* Implication 1: No need to learn the classifier [Hoffer et al. 2018]
	- Just fix it as a Simplex ETF
	- Save 8%, 12%, and 53% parameters for ResNet50, DenseNet169, and ShuffleNet!
- *•* Implication 2: No need of large feature dimension *d*
	- Just use feature dim. $d = \text{\#class } K$ (e.g., $d = 10$ for CIFAR-10)
	- Further saves 21% and 4.5% parameters for ResNet18 and ResNet50!

ResNet50 on CIFAR-10 with different settings

- *•* Learned classifier (default) vs. fixed classifier as a simplex ETF
- Feature dim $d = 2048$ (default) vs. $d = 10$

4 D F

э

ResNet50 on CIFAR-10 with different settings

- *•* Learned classifier (default) vs. fixed classifier as a simplex ETF
- Feature dim $d = 2048$ (default) vs. $d = 10$

 \leftarrow \Box

 \rightarrow \equiv \rightarrow

ResNet50 on CIFAR-10 with different settings

- *•* Learned classifier (default) vs. fixed classifier as a simplex ETF
- Feature dim $d = 2048$ (default) vs. $d = 10$

• Training with small dimensional features and fixed classifiers achieves on-par performance with large dimensional features and learned classifiers.

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 36 / 65

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

4 **E** F

• Class-mean features (CMF) classifier: by NC3 (self-duality), we can also fix the classifier as the class-mean features during training²

• Achieves on-par performance with learned classifiers (ResNet18 on CIFAR100)

 2 Jiang, Zhou, et al., Generalized Neural Collapse for a Large Number of Class[es,](#page-48-0) I[CML](#page-50-0)['2](#page-48-0)0<u>2</u>4 Ω

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 37 / 65

• CMF classifier improves Out-of-distribution (OOD) performance for fine-tuning 2 2

• CMF is simpler to the two-stage approach³

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 38 / 65

^{3&}lt;br>³ Kumar, Ananya, et al., Fine-Tuning can Distort Pretrained Features and Un[derp](#page-49-0)er[for](#page-51-0)[m](#page-49-0) Qut[-o](#page-51-0)[f-](#page-23-0)[Di](#page-24-0)<u>s</u>t[rib](#page-51-0)[ut](#page-23-0)[io](#page-24-0)[n,](#page-50-0) [I](#page-51-0)[CLR](#page-0-0)=2022.

Outline

1 [Neural Collapse \(NC\) Phenomena](#page-7-0)

2 [Understanding NC from Optimization](#page-24-0)

8 [Prevalence of NC under Di](#page-51-0)fferent Training Scenarios

(ロ) (御) (君) (君) (君) 君 のぬの

4 [Conclusion](#page-82-0)

Is Cross-entropy Loss Essential?

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 39 / 65

 QQ

 4 He et al., Bag of tricks for image classification with convolutional neural networks, CVPR'19. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Is Cross-entropy Loss Essential?

Question. Is cross-entropy loss essential to neural collapse?

- *•* We can measure the mismatch between the network output and the one-hot label in many ways.
- *•* Various losses and tricks (e.g., label smoothing, focal loss) have been proposed to improve network training and performance⁴

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 39 / 65

э

 4 He et al., Bag of tricks for image classification with convolutional neural networks, CVPR'19. イロト イ押 トイヨ トイヨト

Example I: Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples⁵

 5 Lin et al., Focal Loss for Dense Object Detection, CVPR'[18.](#page-53-0) QQ

Example II: Label Smoothing (LS)

Label smoothing replaces the hard label by a soft label⁶

 6 Szegedy et al., Rethinking the inception architecture for computer vision, CVPR'16. Muller, Kornblith, Hinton, When does label smoothing help?, [Ne](#page-54-0)urlP[S](#page-54-0)['19](#page-55-0)[.](#page-56-0)

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 41 / 65

Example III: Mean-squared Error (MSE) Loss

Compared with CE, rescaled MSE loss produces on par results for computer vision & NLP tasks.⁷

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 42/65

 7 Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in classification tasks, ICLR 2021. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ Ω

Which Loss is the Best to Use?

Testing accuracy (%) for WideResNet18 on mini-ImageNet with different widths and training iterations

4 D F

 \rightarrow \equiv \rightarrow

∍

Which Loss is the Best to Use?

Testing accuracy (%) for WideResNet18 on mini-ImageNet with different widths and training iterations

• All losses lead to similar performance when network is large enough and trained longer enough. Why?

Theorem (Informal, Zhou et al.'22)

Under the unconstrained feature model, with feature dim.

 $d \geq \text{\#class } K - 1$, for all the one-hot labeling based losses (e.g., CE, FL, *LS, MSE),*

- *• NC are the only global solutions for all losses.*
- *• All losses have benign global landscape w.r.t.* (*W, H, b*)

Theorem (Informal, Zhou et al.'22)

Under the unconstrained feature model, with feature dim.

 $d \geq \text{\#class } K - 1$, for all the one-hot labeling based losses (e.g., CE, FL, *LS, MSE),*

- *• NC are the only global solutions for all losses.*
- *• All losses have benign global landscape w.r.t.* (*W, H, b*)

Implication for practical networks If network is *large enough and trained longer enough*

- All losses lead to largely identical features on training data—NC phenomena
- All losses lead to largely identical performance on test data (experiments in the following slides)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

ResNet50 (with different training epoches) on CIFAR-10 with different training losses

 \leftarrow \Box

 $\leftarrow \equiv$

∍

ResNet50 (with different training epoches) on CIFAR-10 with different training losses

Observation: If network is *large enough and trained longer enough*, all losses lead to largely identical NC features on training data.

 \leftarrow \Box

ミドマミド

All Losses Are Almost Created Equal

ResNet50 (with different network widths and training epoches) on CIFAR-10 with different training losses

• Right top corners not only have better performance, but also have smaller variance than left bottom corners

All Losses Are Almost Created Equal

ResNet50 (with different network widths and training epoches) on CIFAR-10 with different training losses

• Right top corners not only have better performance, but also have smaller variance than left bottom corners

Observation: If network is *large enough and trained longer enough*, all losses lead to largely identical performance on test data.

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 46 / 65

A Large Number of Class

Many applications have extremely large number of classes

Person identification

8.1b people in world

Retrieval systems

each document represents one class

- next word prediction/classification
- #class = vocabulary size

Contrastive learning

 \leftarrow \Box

each data represents one class

Feature dim *d* is much smaller than the #classe[s](#page-64-0) *[K](#page-66-0)*

Spherical constraints are often used in practice for large number of classes

$$
\min_{\mathbf{W},\mathbf{H}} \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{\tau} \left(\mathbf{W} \mathbf{h}_{k,i}, \mathbf{y}_{k} \right)
$$
\ns.t.
$$
\|\mathbf{w}_{k}\|_{2} = 1, \ \|\mathbf{h}_{k,i}\|_{2} = 1, \ \mathbf{h}_{k,i} = \phi_{\theta}(\mathbf{x}_{k,i}), \ \ \forall \ i \in [n], \ \forall \ k \in [K],
$$

where τ is the temperature parameter to scale the output logits.

4 D F

ヨメ メヨメ

 QQ

Spherical constraints are often used in practice for large number of classes

$$
\min_{\mathbf{W},\mathbf{H}} \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{\tau} \left(\mathbf{W} \mathbf{h}_{k,i}, \mathbf{y}_{k} \right)
$$
\n
$$
\text{s.t. } \|\mathbf{w}_{k}\|_{2} = 1, \ \|\mathbf{h}_{k,i}\|_{2} = 1, \ \mathbf{h}_{k,i} = \phi_{\theta}(\mathbf{x}_{k,i}), \ \ \forall \ i \in [n], \ \forall \ k \in [K],
$$

where τ is the temperature parameter to scale the output logits.

- Improve the quality of learned features with larger class separation [Yu et al., 2020, Wang and Isola, 2020]
- Improve test performance in practice [Graf et al., 2021, Liu et al., 2021] weight decay vs spherical constraint

 Ω

When feature dimension *d* is larger than $\#$ class K [Yaras et al., 2022].

• Under the unconstrained feature model, a similar global landscape result (any global solution obeys neural collapse & benign global landscape) can be shown for:

$$
\min_{\mathbf{W}, \mathbf{H}} \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{\tau} (\mathbf{W} \mathbf{h}_{k,i}, \mathbf{y}_{k})
$$

s.t. $\|\mathbf{w}_{k}\|_{2} = 1, \|\mathbf{h}_{k,i}\|_{2} = 1, \forall i \in [n], \forall k \in [K].$

• More advanced analysis based upon Riemannian optimization tools.

When feature dimension *d* is smaller than $\#$ class *K* [Jiang et al., 2024].

- *•* GNC1: variability collapse of within-class features
- *•* GNC2: classifier converges to maximal "margin" (defined in next slide), but may have varied pair-wise angles
- **GNC3**: self-duality between the classifiers and class-means of features

- A smaller τ leads to larger "margin" and better text performance
- GNC is prevalent across different modalities (see [Wu & Papyan'2024] for experimental results on LLM)

(□) (_□) (

ヨメ メヨメ

When feature dimension *d* is smaller than $\#$ class *K* [Jiang et al., 2024].

- *•* GNC2: classifier weights converge to the softmax code that maximizes one-vs-rest distance
	- defined as an optimization problem with a clear geometric meaning
	- softmax code forms a simplex ETF when $K \leq d+1$.
	- closely related to the Tammes problem (one-vs-one distance)

Multi-label Learning Setup

4 D F

 \rightarrow \equiv \rightarrow

э
[Prevalence of NC under Di](#page-51-0)fferent Training Scenarios

Last-Layer Geometry of Multi-label Learning

- *•* Neural collapse in multi-label learning with 3 classes where the colors denote the class label;
- *•* Respectively, left/mid/right panel shows representations during early/mid/late phase of training unconstrai[ned](#page-71-0) [f](#page-73-0)[ea](#page-71-0)[tu](#page-72-0)[r](#page-73-0)[e](#page-50-0)[m](#page-81-0)[o](#page-82-0)[d](#page-50-0)[e](#page-51-0)[l](#page-81-0)[.](#page-82-0)

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 53 / 65

Multilabel-MNIST Synthetic Example

- *•* Experiments with simple MLP architectures.
- The ETF structure still holds for data imba[lan](#page-72-0)[ce](#page-74-0)[d](#page-72-0)[ne](#page-73-0)[s](#page-74-0)[s.](#page-50-0)

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 54 / 65

ヨメ イヨメ

э

Neural Collapse for Multi-Label Learning

(e) \mathcal{NC}_1 (MLab-Cifar10) (f) \mathcal{NC}_2 (MLab-Cifar10) (g) \mathcal{NC}_3 (MLab-Cifar10) (h) \mathcal{NC}_m (MLab-Cifar10)

イロト イ押ト イヨト イヨト

Þ

Progressive separation from shallow to deep layers

• How the data are progressively separated across the layers?⁸

- Effect of depths: create progressive separation and concentration (geometric decay of \mathcal{NC}_1)
- Details will be presented in the next lecture

 8 He & Su, A Law of Progressive Separation for Deep Lear[nin](#page-74-0)g[, 2](#page-76-0)[0](#page-74-0)2<u>2</u>. Ω

Implications on Transfer Learning

イロト イ押ト イヨト イヨト

э

Neural Collapse is Transferable

• Progressive separation is robust to distribution shift.

- Pretrained on CIFAR10
- Evaluate layer-wise NC on CIFAR10 training, CIFAR10 testing, & CIFAR10.2 testing (OOD)
- Model is fixed without fine-tuning

- *•* Observe similar trend of progressive separation and collapse
- *•* Distribution shift causes slightly less collapse (worse performance)

ミドマミド

Neural Collapse is Transferable

- Progressive separation is transferable among different tasks
	- ResNet-34 pre-trained on ImageNet
	- Evaluate on CIFAR10
	- Model is fixed without fine-tuning
	- Train a linear classifier on top of the features

- *•* Layer-wise NC exhibits two phases on downstream tasks:
	- *•* Phase 1: progressively decreasing (universal feature mapping)
	- *•* Phase 2: progressively increasing (specific feature mapping)
- *•* Projection heads and fine-tuning help transferability

Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient

(a) Illustration of layer fine-tuning

◂**◻▸ ◂⁄** ▸

ヨメ イヨメ

э

Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient

Efficient Layer Fine-tuning

Fine-tuning one key intermediate layer is sufficient

ヨメ メヨメ

∢ ロ ▶ - ∢ 何 ▶ - ∢

Outline

1 [Neural Collapse \(NC\) Phenomena](#page-7-0)

2 [Understanding NC from Optimization](#page-24-0)

³ [Prevalence of NC under Di](#page-51-0)fferent Training Scenarios

Conclusion of Lecture 1-2

The objective of learning: Transform nonlinear and complex data to a linear, compact and structured representation.

Understanding learned representation (NC) can help

- *•* design architectures (open the black-box) and training methods
- $$

Zhihui Zhu (Ohio State University) [Low-D Representation vis NC](#page-0-0) June 18, 2024 62 / 65

Conclusion of Lecture 1-2

The objective of learning: Transform nonlinear and complex data to a linear, compact and structured representation.

Lecture 1-3: understand feature learning through learning dynamics Section 2 (this afternoon): learn diverse & discriminative representations, design white-box networks to better capture Low-D structures Can be extended to other learning paradigms, such as self-supervised learning, multi-modality learning**K ロ ト マ 御 ト マ ミ ト** つへへ

References

- 1 Z. Zhu*, T. Ding*, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu, A Geometric Analysis of Neural Collapse with Unconstrained Features, NeurIPS'2021.
- 2 J. Zhou*, X. Li*, T. Ding, C. You, Q. Qu*, Z. Zhu*. On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features. ICML'2022.
- 3 C. Yaras*, P. Wang*, Z. Zhu, L. Balzano, Q. Qu, Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold. NeurIPS'2022.
- 4 J. Zhou, C. You, X. Li, K. Liu, S. Liu, Q. Qu, Z. Zhu. Are All Losses Created Equal? A Neural Collapse Perspective. NeurIPS'2022.
- 5 X. Li, S. Liu, J. Zhou, X. Lu, C. Fernandez-Granda, Z. Zhu, Q. Qu, Principled and efficient transfer learning of deep models via neural collapse, Transactions on Machine Learning, 2024.
- 6 J. Jiang*, J. Zhou*, P. Wang, Q. Qu, D. Mixon, C. You, and Z. Zhu, Generalized neural collapse for a large number of classes, ICML'2024.
- 7 P. Li*, Y. Wang*, X. Li, Q. Qu, Neural Collapse in Multi-label Learning with Pick-all-label Loss, ICML'2024.

G.

Acknowledgement

Thank You! Questions?

(ロ) (御) (君) (君) (君) 君 のぬの