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This Tutorial: The Outline

Session 1: Understanding Low-D Representations in Deep Networks

• Lecture 1-1: Introduction to Basic Low-D Models

• Lecture 1-2: Understanding Low-D Representation via Neural
Collapse

• Lecture 1-3: Invariant Low-D Subspaces of Learning Dynamics

Session 2: Designing Deep Networks for Pursuing Low-D Structures

• Lecture 2-1: Representation Learning via the Principle of Compression

• Lecture 2-2: White-Box Architecture Design via Unrolled
Optimization

• Lecture 2-3: White-Box Transformers via Sparse Rate Reduction



Classical Low-dimension Model: GPCA

• Generalized PCA for mixture of subspaces [Vidal, Ma, Sastry 2005]
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Classical Low-dimension Model: GPCA

Understand and interacte with the physical world =) nonlinear data
Coping with nonlinearity demands (deeper) representation
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Historical Context: Quest for Image Representation I

• Suitable representation is important to the performance

• Classical design requires domain knowledge
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Historical Context: Quest for Image Representation II

Deep learning builds multiple level of abstractions

• Learn representation from data by back-propagation

• Reduce domain knowledge and feature engineering

• Progressively “linearize” the nonlinear structure
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The objective of learning:
Transform nonlinear and complex data to a

linear, compact and structured representation.

• Empirically observe across many architectures and dataset

• Theoretically justify for simple models

• Lead to principled ways for designing architectures to pursue Low-D
structures
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Outline

1 Neural Collapse (NC) Phenomena

2 Understanding NC from Optimization

3 Prevalence of NC under Di↵erent Training Scenarios

4 Conclusion



Neural Collapse (NC) Phenomena

Multi-Class Image Classification Problem
• Goal: Learn a deep network predictor from a labelled training dataset
{(xk,i,yk}); i = 1, · · · , n, k = 1, · · · ,K}.

• Training Labels: k = 1, . . . ,K
• K = 10 classes (MNIST, CIFAR10, etc)
• K = 1000 classes (ImageNet)

• For simplicity, we assume balanced dataset where each class has n
training samples.1

1
If not, we can use data augmentation to make them balanced
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers

• A vanilla deep network:

f⇥(x) = WL|{z}
linear classifer W

� (WL�1 · · ·�(W1x+ b1) + bL�1)| {z }
feature �✓(x)=:h

+bL

• Progressive linear separation through nonlinear layers [Naitzat et
al. 2020]
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers

• Training a deep neural network:

min
✓,W ,b

1

Kn

KX

k=1

nX

i=1

LCE
�
W�✓(xk,i) + b,yk

�
| {z }

cross-entropy (CE) loss

+� k(✓,W , b)k2F| {z }
weight decay
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Neural Collapse (NC) Phenomena

Deep Neural Network Classifiers
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Neural Collapse (NC) Phenomena

Neural Collapse in Multi-Class Classification

• Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

• Precise mathematical structure within the features and classifier
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Neural Collapse (NC) Phenomena

Neural Collapse in Multi-Class Classification

Credit: Han et al. Neural Collapse Under MSE Loss: Proximity to and

Dynamics on the Central Path. ICLR, 2022.
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

• NC1: Within-Class Variability Collapse: features of each class
collapse to class-mean with zero variability:

k-th class, i-th sample : hk,i ! hk,
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant

hhk,hk0i
khkkkhk0k

!
(
1, k = k0

� 1
K�1 , k 6= k0
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF):
the class means are linearly separable, and maximally distant

H
>
H ⇠ IK � 1

K
1K1>K ,

H =
⇥
h1 · · · hK

⇤
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

• For any K unit-length vectors u1, . . . ,uK in Rd (with d � K � 1),
then maxk 6=k0huk,uk0i � � 1

K�1 and the minimum is achieved when
they form a simplex ETF [Rankin’55].

• The simplest case of the Optimal Packings on Spheres, or the
Tammes problem.

• Proof:

0 
��

KX

k=1

uk

��2
2
 K +K(K � 1)max

k 6=k0
huk,uk0i

=)max
k 6=k0

huk,uk0i � � 1

K � 1

achieves equality when
PK

k=1 uk = 0 and huk,uk0i = � 1
K�1 , 8k 6= k0
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Neural Collapse (NC) Phenomena

Neural Collapse: Symmetry and Structures

• NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

wk

kwkk
! hk

khkk
,

where wk represents the k-th classifier
(i.e., k-th row of W ).
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Neural Collapse (NC) Phenomena

Understanding the Prevalence of Neural Collapse

Question. Given the prevalence of Neural Collapse across datasets
and network architectures, why would such a phenomenon happen

in training overparameterized networks?
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Outline

1 Neural Collapse (NC) Phenomena

2 Understanding NC from Optimization

3 Prevalence of NC under Di↵erent Training Scenarios

4 Conclusion



Understanding NC from Optimization

Dealing with a Highly Nonconvex Problem

The training problem is highly nonconvex [Li et al.’18]:

min
✓0,W ,b

1

Kn

KX

k=1

nX

i=1

LCE
�
W�✓0(xk,i) + b,yk

�
+ �k(✓0,W , b)k2F ,

due to the fact that the network

f⇥(x) = WL|{z}
linear classifer W

� (WL�1 · · ·�(W1x+ b1) + bL�1)| {z }
feature �✓(x)=:h

+bL

• Nonlinear interaction across layers.

• Nonlinear activation functions.
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

Assumption. We treat H =
⇥
h1,1 · · · hK,n

⇤
as a free optimiza-

tion variable, ignoring the constraint h = �✓(x).
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Understanding NC from Optimization

The Trend of Large Models...
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Understanding NC from Optimization

Simplification: Unconstrained Feature Model

Assumption. We treat H =
⇥
h1,1 · · · hK,n

⇤
as a free optimiza-

tion variable, ignoring the constraint h�✓(x).

• Validity: modern network are highly overparameterized, that they are
universal approximators [Shaham’18];

• State-of-the-Art: also called Layer-Peeled Model [Fang’21],
existing work [E’20, Lu’20, Mixon’20, Fang’21] only studied global
optimality conditions;
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Understanding NC from Optimization

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, MLP with varying network widths

• Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

• The network memorizes training data in a very special way: NC

• We observe similar results on random inputs (random pixels)
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

min
W ,H,b

1

Kn

KX

k=1

nX

i=1

LCE(Whk,i + b,yk) +
�W

2
kW k2F +

�H

2
kHk2F +

�b

2
kbk22

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W ,H). Then

• Global optimality: Any global solution ({H?,W ?, b?}) obeys
Neural Collapse, with b

? = 0 and

h
?
k,i = h

?
k| {z }

NC1

,
hh?

k,h
?
k0i

kh?
kkkh

?
k0k

=

(
1, k = k0

� 1
K�1 , k 6= k0

| {z }
NC2

,
wk?

kwk?k
=

h
?
k

kh?
kk| {z }

NC3
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

[Lu et al.’20] study the following one-example-per class model

min
{hk}

1

K

KX

k=1

LCE
�
hk,yk

�
, s.t.khkk2 = 1

[E et al.’20, Fang et al.’21, Gral et al.’21, etc.] study constrained formulation

min
{hk,i},W

1

Kn

KX

k=1

nX

i=1

LCE
�
Whk,i,yk

�
, s.t. kW kF  1, khk,ik2  1

These work show that any global solution has NC, but

• What about local minima/saddle points?

• The constrained formulations are not aligned with practice
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Understanding NC from Optimization

Global Optimitality Does Not Imply E�cient Optimization

Our loss is still highly nonconvex:

min
W ,H,b

1

Kn

KX

k=1

nX

i=1

LCE(Whk,i + b,yk) +
�W

2
kW k2F +

�H

2
kHk2F +

�b

2
kbk22
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W ,H). Then
• Global optimality: Any global solution ({H?,W ?, b?}) obeys
Neural Collapse.

• Benign global landscape: The objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.
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Understanding NC from Optimization

Geometric Analysis of Global Landscape

Theorem (Global Optimality & Benign Global Landscape, Zhu et al.’21)

Let feature dimension d is larger than the class number K, i.e., d > K.
Consider the above nonconvex optimization problem w.r.t. (W ,H). Then
• Global optimality: Any global solution ({H?,W ?, b?}) obeys
Neural Collapse.

• Benign global landscape: The objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

Message. Iterative algorithms such as (stochastic) gradient
descent will always learn Neural Collapse features and classifiers.
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Understanding NC from Optimization

Implications of Our Results

• A feature learing perspective.
• Top down: unconstrained feature model, representation learning, but

no input information.
• Bottom up: shallow network, strong assumptions, far from practice.

• Connections to empirical phenomena.
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Understanding NC from Optimization

Implications of Our Results

min
{hk,i},W ,b

1

Kn

KX

k=1

nX

i=1

LCE
�
Whk,i + b,yk

�
+ �k({hk,i},W , b)k2F (1)

• Closely relates to low-rank matrix factorization problems [Burer et
al’03, Bhojanapalli et al’16, Ge et al’16, Zhu et al’18,Li et al’19, Chi
et al’19]

• However, we have more structured observation

Y =

2

4
1 · · · 1

1 · · · 1
1 · · · 1

3

5 = IK ⌦ 1>n
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Understanding NC from Optimization

Experiments on Practical Neural Networks
Conduct experiments with practical networks to verify our findings:

Use a Residual Neural Network
(ResNet) on CIFAR-10 Dataset:

• K = 10 classes

• 50K training images

• 10K testing images
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Understanding NC from Optimization

Experiments: NC is Algorithm Independent

ResNet18 on CIFAR-10 with di↵erent training algorithms

• The smaller the quantities, the severer NC

• NC is prevalent across di↵erent training algorithms
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Understanding NC from Optimization

Related Works on NC
A non-comprehensive overview of related work on the analysis and
application of NC
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

NC is prevalent, and classifier always converges to a Simplex ETF

• Implication 1: No need to learn the
classifier [Ho↵er et al. 2018]

- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and Shu✏eNet!

• Implication 2: No need of large feature
dimension d

- Just use feature dim. d = #class K (e.g.,
d = 10 for CIFAR-10)

- Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory

ResNet50 on CIFAR-10 with di↵erent settings

• Learned classifier (default) vs. fixed classifier as a simplex ETF

• Feature dim d = 2048 (default) vs. d = 10

• Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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Understanding NC from Optimization

Exploit NC for Improving Training & Memory
• Class-mean features (CMF) classifier: by NC3 (self-duality), we can
also fix the classifier as the class-mean features during training2

• Achieves on-par performance with learned classifiers (ResNet18 on
CIFAR100)

2
Jiang, Zhou, et al., Generalized Neural Collapse for a Large Number of Classes, ICML’2024

Zhihui Zhu (Ohio State University) Low-D Representation vis NC June 18, 2024 37 / 65



Understanding NC from Optimization

Exploit NC for Improving Training & Memory

• CMF classifier improves Out-of-distribution (OOD) performance for
fine-tuning2

• CMF is simpler to the two-stage approach3

3
Kumar, Ananya, et al., Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution, ICLR 2022.
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Prevalence of NC under Di↵erent Training Scenarios

Is Cross-entropy Loss Essential?

Question. Is cross-entropy loss essential to neural collapse?

• We can measure the mismatch between the network output and the
one-hot label in many ways.

• Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance4

4He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR’19.
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Prevalence of NC under Di↵erent Training Scenarios

Example I: Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples5

5Lin et al., Focal Loss for Dense Object Detection, CVPR’18.
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Prevalence of NC under Di↵erent Training Scenarios

Example II: Label Smoothing (LS)
Label smoothing replaces the hard label by a soft label6

6Szegedy et al., Rethinking the inception architecture for computer vision, CVPR’16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurIPS’19.
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Prevalence of NC under Di↵erent Training Scenarios

Example III: Mean-squared Error (MSE) Loss

Compared with CE, rescaled MSE loss produces on par results for
computer vision & NLP tasks.7

7Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Prevalence of NC under Di↵erent Training Scenarios

Which Loss is the Best to Use?

• All losses lead to similar performance when network is large enough
and trained longer enough. Why?
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Prevalence of NC under Di↵erent Training Scenarios

Are All Loses Created Equal?—A NC Perspective

Theorem (Informal, Zhou et al.’22)

Under the unconstrained feature model, with feature dim.
d � #class K � 1, for all the one-hot labeling based losses (e.g., CE, FL,
LS, MSE),

• NC are the only global solutions for all losses.

• All losses have benign global landscape w.r.t. (W ,H, b)

Implication for practical networks If network is large enough and
trained longer enough

• All losses lead to largely identical features on training
data—NC phenomena

• All losses lead to largely identical performance on test data
(experiments in the following slides)
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Prevalence of NC under Di↵erent Training Scenarios

Are All Loses Created Equal?—A NC Perspective

ResNet50 (with di↵erent training epoches) on CIFAR-10 with di↵erent
training losses

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical NC features on training data.
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Prevalence of NC under Di↵erent Training Scenarios

All Losses Are Almost Created Equal
ResNet50 (with di↵erent network widths and training epoches) on
CIFAR-10 with di↵erent training losses

• Right top corners not only have better performance, but also have
smaller variance than left bottom corners

Observation: If network is large enough and trained longer enough,
all losses lead to largely identical performance on test data.
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Prevalence of NC under Di↵erent Training Scenarios

A Large Number of Class

Many applications have extremely large number of classes

Feature dim d is much smaller than the #classes K
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse with Feature Normalization

Spherical constraints are often used in practice for large number of classes

min
W ,H

1

N

KX

k=1

nX

i=1

L⌧ (Whk,i,yk)

s.t. kwkk2 = 1, khk,ik2 = 1, hk,i = �✓(xk,i), 8 i 2 [n], 8 k 2 [K],

where ⌧ is the temperature parameter to scale the output logits.

• Improve the quality of
learned features with larger
class separation [Yu et al.,
2020, Wang and Isola, 2020]

• Improve test performance in
practice [Graf et al., 2021,
Liu et al., 2021] weight decay vs spherical constraint
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse with Feature Normalization

When feature dimension d is larger than # class K [Yaras et al., 2022].

• Under the unconstrained feature model, a similar global landscape
result (any global solution obeys neural collapse & benign global
landscape) can be shown for:

min
W ,H

1

N

KX

k=1

nX

i=1

L⌧ (Whk,i,yk)

s.t. kwkk2 = 1, khk,ik2 = 1, 8 i 2 [n], 8 k 2 [K].

• More advanced analysis based upon Riemannian optimization tools.
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse with Feature Normalization

When feature dimension d is smaller than # class K [Jiang et al., 2024].

• GNC1: variability collapse of within-class features

• GNC2: classifier converges to maximal “margin” (defined in next
slide), but may have varied pair-wise angles

• GNC3: self-duality between the classifiers and class-means of features

• A smaller ⌧ leads to larger “margin” and better text performance

• GNC is prevalent across di↵erent modalities (see [Wu & Papyan’2024]
for experimental results on LLM)
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse with Feature Normalization
When feature dimension d is smaller than # class K [Jiang et al., 2024].
• GNC2: classifier weights converge to the softmax code that
maximizes one-vs-rest distance

- defined as an optimization problem with a clear geometric meaning
- softmax code forms a simplex ETF when K  d+ 1.
- closely related to the Tammes problem (one-vs-one distance)
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Prevalence of NC under Di↵erent Training Scenarios

Multi-label Learning Setup
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Prevalence of NC under Di↵erent Training Scenarios

Last-Layer Geometry of Multi-label Learning

• Neural collapse in multi-label learning with 3 classes where the colors
denote the class label;

• Respectively, left/mid/right panel shows representations during
early/mid/late phase of training unconstrained feature model.
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Prevalence of NC under Di↵erent Training Scenarios

Multilabel-MNIST Synthetic Example

• Experiments with simple MLP architectures.

• The ETF structure still holds for data imbalancedness.
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse for Multi-Label Learning
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Prevalence of NC under Di↵erent Training Scenarios

Progressive separation from shallow to deep layers

• How the data are progressively separated across the layers?8

• E↵ect of depths: create progressive separation and concentration
(geometric decay of NC1)

• Details will be presented in the next lecture

8He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Prevalence of NC under Di↵erent Training Scenarios

Implications on Transfer Learning
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse is Transferable

• Progressive separation is robust to distribution shift.

- Pretrained on CIFAR10

- Evaluate layer-wise NC on
CIFAR10 training,
CIFAR10 testing, &
CIFAR10.2 testing (OOD)

- Model is fixed without
fine-tuning

• Observe similar trend of progressive separation and collapse

• Distribution shift causes slightly less collapse (worse performance)
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Prevalence of NC under Di↵erent Training Scenarios

Neural Collapse is Transferable

• Progressive separation is transferable among di↵erent tasks

- ResNet-34 pre-trained on
ImageNet

- Evaluate on CIFAR10

- Model is fixed without
fine-tuning

- Train a linear classifier on
top of the features

• Layer-wise NC exhibits two phases on downstream tasks:
• Phase 1: progressively decreasing (universal feature mapping)
• Phase 2: progressively increasing (specific feature mapping)

• Projection heads and fine-tuning help transferability
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Prevalence of NC under Di↵erent Training Scenarios

E�cient Layer Fine-tuning

Fine-tuning one key intermediate layer is su�cient

Trained Layer i

Downstream 
Data

Layer FT

Trained Layer 1

Trained Layer i

Downstream 
Data

New Classifier

Trained Layer 1

Trained Layer L

Trained Layer i

Downstream 
Data

SCL FT

Trained Layer 1

Trained Layer i

Downstream 
Data

New Classifier

Trained Layer 1

Trained Layer L

Skip Connection

Layers Frozen

Layers to update

(a) Illustration of layer fine-tuning

(b) Fine-tuning results on CIFAR-10
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E�cient Layer Fine-tuning

Fine-tuning one key intermediate layer is su�cient

Trained Layer i

Downstream 
Data

Layer FT

Trained Layer 1

Trained Layer i

Downstream 
Data

New Classifier

Trained Layer 1

Trained Layer L

Trained Layer i

Downstream 
Data

SCL FT

Trained Layer 1

Trained Layer i

Downstream 
Data

New Classifier

Trained Layer 1

Trained Layer L

Skip Connection

Layers Frozen

Layers to update

(a) Illustration of layer fine-tuning (b) Fine-tuning more layers on CIFAR-100
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Conclusion

Conclusion of Lecture 1-2

The objective of learning:
Transform nonlinear and complex data to a

linear, compact and structured representation.

Understanding learned representation (NC) can help

• design architectures (open the black-box) and training methods

• improve/understand e�ciency, robustness, transferability, etc.
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Conclusion of Lecture 1-2

The objective of learning:
Transform nonlinear and complex data to a

linear, compact and structured representation.

Lecture 1-3: understand feature learning through learning dynamics
Section 2 (this afternoon): learn diverse & discriminative representations,
design white-box networks to better capture Low-D structures
Can be extended to other learning paradigms, such as self-supervised
learning, multi-modality learning
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