

Holistic Features are almost Sufficient for Text-to-Video Retrieval

Kaibin Tian*, Ruixiang Zhao*, Zijie Xin, Bangxiang Lan, Xirong Li⁺

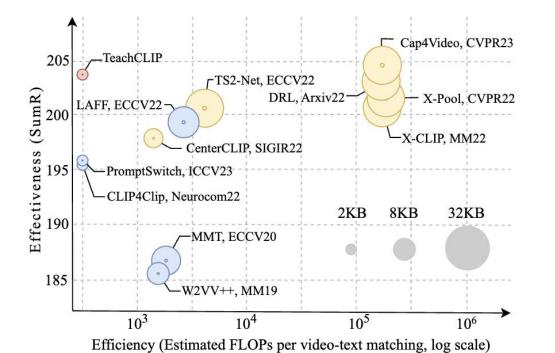
Text-to-Video Retrieval (T2VR)

 \succ aims to retrieve unlabeled videos by ad-hoc textual queries

≻ two objectives: 1) effective 2) efficient

Query: two girls doing a cups song

Motivation

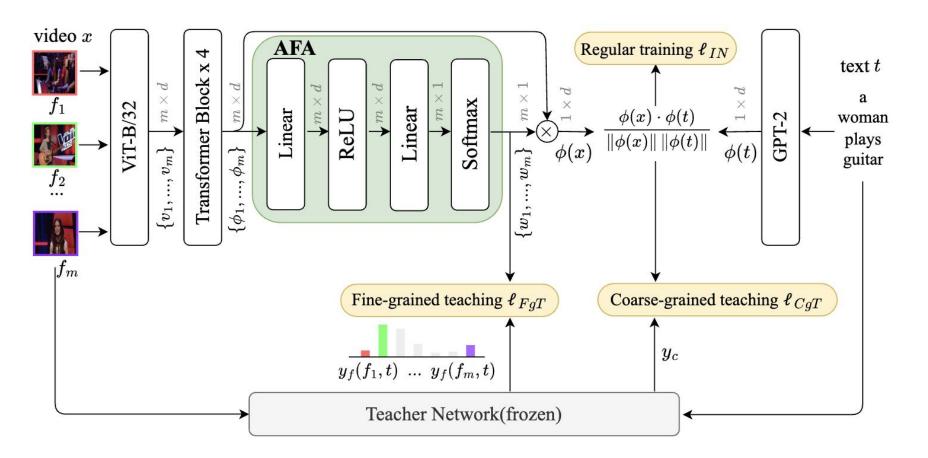


CLIP4Clip: efficient but not effective enough

Recent methods: effective but inefficient

knowledge distillation

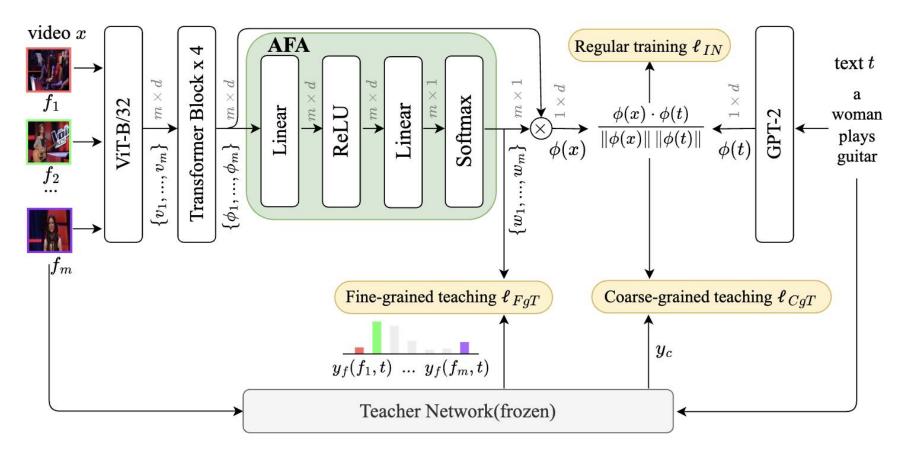
TeachCLIP: a good balance


Madal	Per video-text (\downarrow)	Video feature (\downarrow)	Video feature (\downarrow)	R1	SumR	
Model	matching (FLOPs)	storage (KB)	extraction (FLOPs)	(†)	(†)	
CLIPPING[27]	0.5K	2	16.80G	40.7	_	
CLIP4Clip[24]	0.5K	2	53.64G	42.8	195.5	
PromptSwitch[4]	0.5K	2	59.28G	43.6	195.7	
CenterCLIP[38]	1.5K	6		44.2	197.9	
TS2-Net[22]	6.1K	24	54.27G	46.7	200.5	
X-CLIP[25]	220.9K	26	53.64G	45.3	200.8	
X-Pool[9]	275.0K	24	53.49G	46.0	201.5	
DRL[32]	220.4K	26	53.64G	46.2	203.2	
Cap4Video[34]	220.9K	28	_	47.8	204.3	
TeachCLIP	0.5K	2	53.65G	46.8	203.7	

Method

Attentional frame-feature aggregatiog block

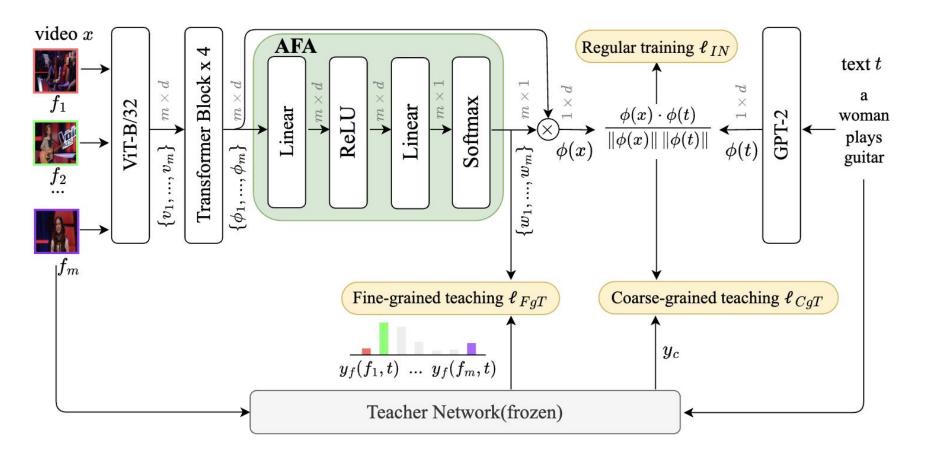
Multi-grained teaching



Method

Multi-grained teaching
Coarse-grained teaching

$$\begin{array}{ll} \ell_{CgT} := & \displaystyle \frac{1}{b} \sum_{i=1}^{b} d_p \big(\sigma(B_{i,\cdot}), \sigma(y_c(v_i,\cdot)) \big) + \\ & \displaystyle \frac{1}{b} \sum_{j=1}^{b} d_p \big(\sigma(B_{\cdot,j}), \sigma(y_c(\cdot,t_j)) \big) \end{array}$$

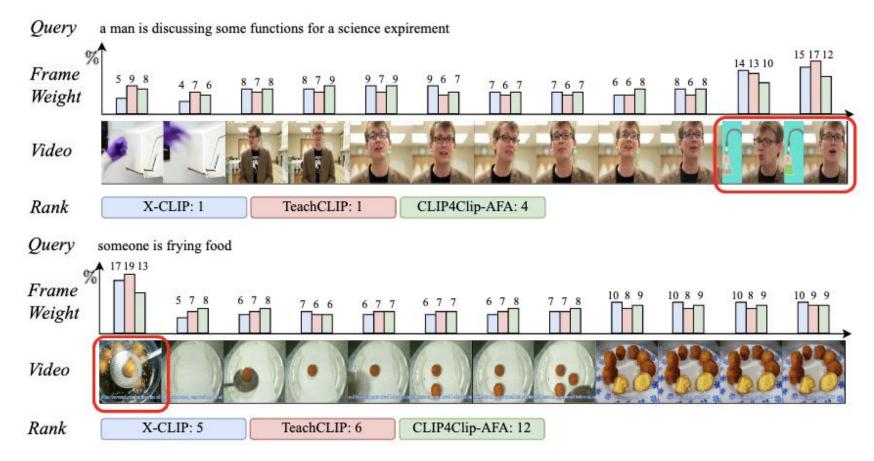


Method

Multi-grained teaching
Fine-grained teaching

$$\ell_{FgT} := -rac{1}{b} \sum_{i=1}^{b} \sum_{k=1}^{m} y_f(f_{i,k}, t_i) \log w_{i,k}.$$

Results


> TeachCLIP has the same efficiency as CLIP4Clip, yet has near-SOTA effectiveness.

Model	MSRVTT-1k		MSRVTT-3k		MSVD		VATEX		ActNetCap			DiDeMo			Mean				
	R 1	R5	SumR	R 1	R5	SumR	R1	R5	SumR	R 1	R5	SumR	R 1	R5	SumR	R 1	R5	SumR	
Feature re-learnin	g w/o	CLIP	feature:										10			~			
W2VV++ [18]	18.9	45.3	121.7	11.1	29.6	81.2	22.4	51.6	138.8	-	-	-	-	—	-	-	-	-	-
DualE [6]	21.1	48.7	130.0	11.6	30.3	83.2	-	_		36.8	73.6	194.1	-	_	_	-	_	-	-
CE [21]	20.9	48.8	132.1	10.0	29.0	80.2	19.8	49.0	132.6	_	_	_	17.7	46.6	-	_	_	_	-
SEA [19]	23.8	50.3	137.9	13.1	33.4	91.5	24.6	55.0	147.5	_	_	_	-		-	_	_	-	-
MMT [8]	24.6	54.0	145.7		_	_	-		_	_	_	_	22.7	54.2	_	_	_	_	-
TeachText [3]	29.6	61.6	165.4	15.0	38.5	105.2	25.4	56.9	153.6	53.2	87.4	233.9	23.5	57.2	-	-	-	-	-
Feature re-learnin	g with	CLIF	eature feature	:															
SEA	-		182.6		44.3	120.7	34.5	68.8	183.8	52.4	90.2	238.5	_	<u> </u>	_	_	_	—	-
W2VV++	39.4	68.1	185.6	23.0	49.0	132.7	37.8	71.0	190.4	55.8	91.2	243.0	-	_	_	_	_	_	_
MMT	39.5	68.3	186.1	24.9	50.5	137.4	40.6	72.0	194.3	54.4	89.2	238.6	-	-	_	_	_	_	_
LAFF [13]	45.8	71.5	199.3	29.1	54.9	149.8	45.4	70.6	200.6	59.1	91.7	247.1	-	-	-	-	-	-	-
CLIP-based end-te	o-end	(visua	l backb	one: V	/iT-B/	32):													
CenterCLIP [38]	44.2	71.6	197.9	-	_	_	47.3	76.8	209.7	-	_	_	43.9	74.6	204.3	-	_	_	_
CLIP4Clip [24]	42.8	71.6	195.5	29.4	54.9	150.1	45.6	76.1	206.6	61.6	91.1	248.5	39.7	71.0	194.1	42.0	69.0	189.2	197.3
TS2-Net [22]	46.7	72.6	200.5	29.9	56.4	153.6	44.6	75.8	204.9	61.1	91.5	248.6	37.3	69.9	190.4	40.2	69.4	188.4	197.7
X-CLIP [25]	45.3	73.7	200.8	31.2	57.4	156.7	47.2	77.0	210.1	62.2	90.9	248.5	44.4	74.6	204.1	45.0	73.1	200.2	203.4
X-Pool [9]	46.0	72.8	201.5	_	-	_	-	_		_	_	_	-	_	_	-	_	_	_
DRL [32]	46.2	74.0	203.2	-	-			_	_	_	_	_	-	_	_	47.9	73.8	204.4	-
PromptSwitch [4]	43.6	71.5	195.7	-	_		46.3	75.8	206.6	_	_	_	-		-	_	_	_	
CLIP-ViP [36]	46.5	72.1	201.1		_	_	_		_	_	_	_	-	-	_	40.6	70.4	190.3	-
STAN [20]	46.9	72.8	202.5	-	_	_	-	-	—	-	-	_	-	-	-	46.5	71.5	198.9	-
Cap4Video [34]	47.8	73.8	204.3	-	-	-	-	-	—	-	-	_	-	-	-	52.0	79.4	218.9	-
CLIP-ViP*	50.1	74.8	209.5	_	_	-		_	-	-	_	-	-	_	-	48.6	77.1	210.1	-
UMT [17]	51.0	76.5	211.7	-	-	_	71.9	94.5	264.2			-	58.3	83.9	233.7	61.6	86.8	239.9	-
TeachCLIP	46.8	74.3	203.7	30.9	57.1	156.0	47.4	77.3	210.2	63.6	91.9	251.6	42.2	72.7	200.1	43.7	71.2	196.0	202.9

Results

The weights by TeachCLIP are closer to the query-dependent weights by the teacher, especially on salient frames (manually marked out by red rectangles).

Conclusion

➤ Main contribution

- We propose TeachCLIP, letting a CLIP4Clip based network learn from more advanced yet computationally heavy T2VR models.
- ➢ We propose Attentional frame-Feature Aggregation (AFA) to convey fine-grained cross-modal knowledge ,which introduces no extra storage / computation overhead at the retrieval stage.

≻ Codes:

https://github.com/ruc-aimc-lab/TeachCLIP

≻ Contact:

ruixiangzhao@ruc.edu.cn