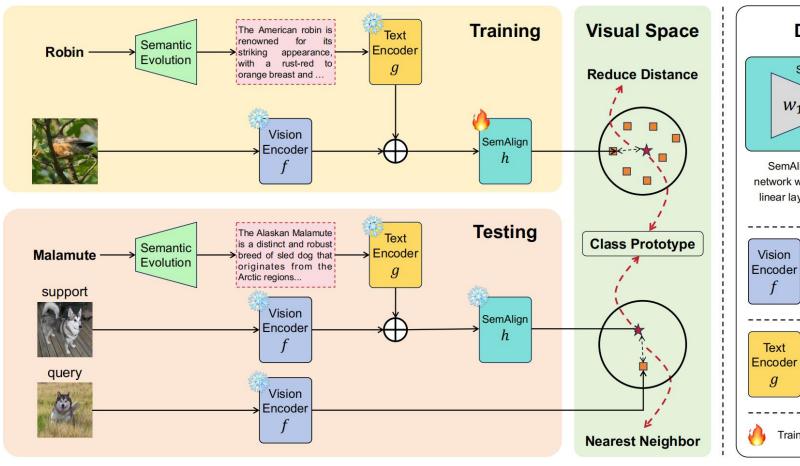
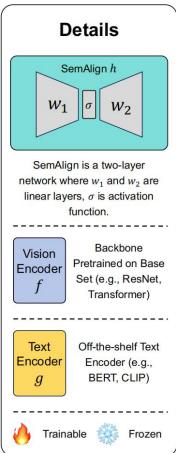



Simple Semantic-Aided Few-Shot Learning

Hai Zhang^{1*} Junzhe Xu^{1,2*‡} Shanlin Jiang³ Zhenan He^{1†}

¹College of Computer Science, Sichuan University ²Banma Network Technology, Alibaba Group ³Naveen Jindal School of Management, University of Texas at Dallas


Quick Preview


We propose the **Sem**antic **Evo**lution module to generate high-quality category descriptions.

Quick Preview

We design a Simple **Sem**antic **Alig**nment Network that translates high-quality semantic features into robust class prototypes.

Quick Preview

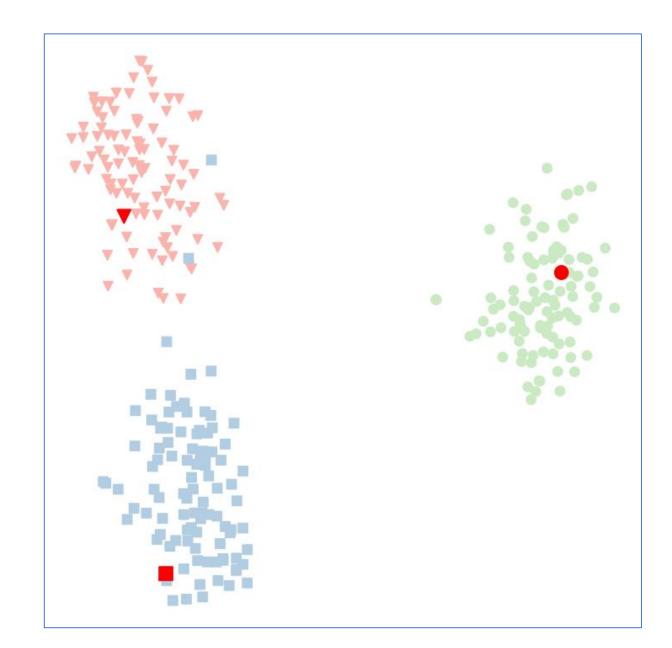
We achieved consistent improvements on two tasks across the four datasets.

8	Method	Venue	Backbone	MiniIn	nageNet	TieredIı	nageNet
	Method	venue	Dackbone	5-way 1-shot	5-way 5-shot	5-way 1-shot	5-way 5-shot
	MatchNet [53]	NeurIPS'16	ResNet-12	65.64 ± 0.20	78.72 ± 0.15	68.50 ± 0.92	80.60 ± 0.71
	ProtoNet [46]	NeurIPS'17	ResNet-12	62.39 ± 0.21	80.53 ± 0.14	68.23 ± 0.23	84.03 ± 0.16
	MAML [13]	ICML'17	ResNet-12	49.24 ± 0.21	58.05 ± 0.10	67.92 ± 0.17	72.41 ± 0.20
p	TADAM [37]	NeurIPS'18	ResNet-12	58.50 ± 0.30	76.70 ± 0.30	62.13 ± 0.31	81.92 ± 0.30
se	CAN [20]	NeurIPS'19	ResNet-12	63.85 ± 0.48	79.44 ± 0.34	69.89 ± 0.51	84.23 ± 0.37
-B	CTM [29]	CVPR'19	ResNet-18	64.12 ± 0.82	80.51 ± 0.13	68.41 ± 0.39	84.28 ± 1.73
IIa	RFS [49]	ECCV'20	ResNet-12	62.02 ± 0.63	79.64 ± 0.44	69.74 ± 0.72	84.41 ± 0.55
Visual-Based	FEAT [60]	CVPR'20	ResNet-12	66.78 ± 0.20	82.05 ± 0.14	70.80 ± 0.23	84.79 ± 0.16
	Meta-Baseline [6]	ICCV'21	ResNet-12	63.17 ± 0.23	79.26 ± 0.17	68.62 ± 0.27	83.29 ± 0.18
	SUN [11]	ECCV'22	ViT-S	67.80 ± 0.45	83.25 ± 0.30	72.99 ± 0.50	86.74 ± 0.33
	FewTURE [19]	NeurIPS'22	Swin-T	72.40 ± 0.78	86.38 ± 0.49	76.32 ± 0.87	89.96 ± 0.55
	FGFL [7]	ICCV'23	ResNet-12	69.14 ± 0.80	86.01 ± 0.62	73.21 ± 0.88	87.21 ± 0.61
	Meta-AdaM [45]	NeurIPS'23	ResNet-12	59.89 ± 0.49	77.92 ± 0.43	65.31 ± 0.48	85.24 ± 0.35
	KTN [38]	ICCV'19	Conv-128	64.42 ± 0.72	74.16 ± 0.56	74.16 ± 0.56	:-
7	AM3 [57]	NeurIPS'19	ResNet-12	65.30 ± 0.49	78.10 ± 0.36	69.08 ± 0.47	82.58 ± 0.31
ase	TRAML[28]	CVPR'20	ResNet-12	67.10 ± 0.52	79.54 ± 0.60	-	-
-B	AM3-BERT [59]	ICMR'21	ResNet-12	68.42 ± 0.51	81.29 ± 0.59	77.03 ± 0.85	87.20 ± 0.70
ıtic	SVAE-Proto [58]	CVPR'22	ResNet-12	74.84 ± 0.23	83.28 ± 0.40	76.98 ± 0.65	85.77 ± 0.50
Semantic-Based	SP-CLIP [5]	CVPR'23	Visformer-T	72.31 ± 0.40	83.42 ± 0.30	78.03 ± 0.46	88.55 ± 0.32
Ser	SemFew	Ours	ResNet-12	77.63 ± 0.63	83.04 ± 0.48	78.96 ± 0.80	85.88 ± 0.62
	SemFew-Trans	Ours	Swin-T	78.94 ± 0.66	86.49 ± 0.50	82.37 ± 0.77	89.89 ± 0.52

Table 1. Results (%) on MiniImageNet and TieredImageNet. The ± shows 95% confidence intervals. The best results are shown in **bold**.

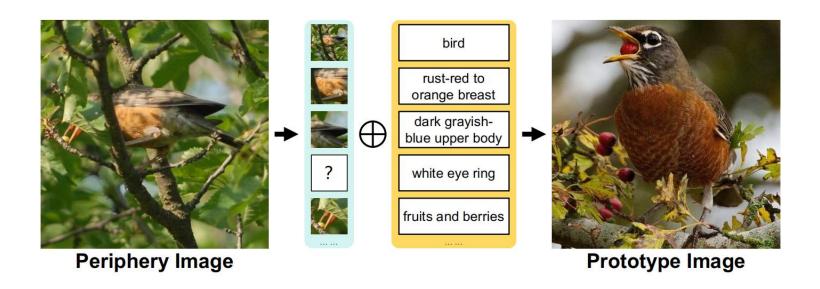
Method	X 7	Backbone	CIFA	R-FS	FC100	
Method	Venue	Баскоопе	5-way 1-shot	5-way 5-shot	5-way 1-shot	5-way 5-shot
ProtoNet [46]	NeurIPS'17	ResNet-12	72.20 ± 0.70	83.50 ± 0.50	41.54 ± 0.76	57.08 ± 0.76
TADAM [37]	NeurIPS'18	ResNet-12	-	-	40.10 ± 0.40	56.10 ± 0.40
MetaOptNet [27]	CVPR'19	ResNet-12	72.80 ± 0.70	84.30 ± 0.50	47.20 ± 0.60	55.50 ± 0.60
MABAS [23]	ECCV'20	ResNet-12	73.51 ± 0.92	85.65 ± 0.65	42.31 ± 0.75	58.16 ± 0.78
RFS [49]	ECCV'20	ResNet-12	71.50 ± 0.80	86.00 ± 0.50	42.60 ± 0.70	59.10 ± 0.60
SUN [11]	ECCV'22	ViT-S	78.37 ± 0.46	88.84 ± 0.32	= 1	-
FewTURE [19]	NeurIPS'22	Swin-T	77.76 ± 0.81	88.90 ± 0.59	47.68 ± 0.78	63.81 ± 0.75
Meta-AdaM [45]	NeurIPS'23	ResNet-12	-	-	41.12 ± 0.49	56.14 ± 0.49
SP-CLIP [5]	CVPR'23	Visformer-T	82.18 ± 0.40	88.24 ± 0.32	48.53 ± 0.38	61.55 ± 0.41
SemFew	Ours	ResNet-12	83.65 ± 0.70	87.66 ± 0.60	54.36 ± 0.71	62.79 ± 0.74
SemFew-Trans	Ours	Swin-T	84.34 ± 0.67	89.11 ± 0.54	54.27 ± 0.77	65.02 ± 0.72

Table 2. Results (%) on CIFAR-FS and FC100. The ± shows 95% confidence intervals. The best results are shown in **bold**.

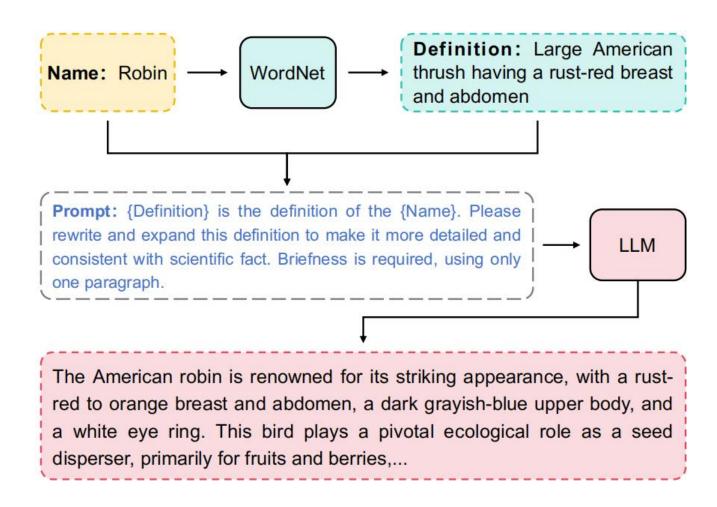

Motivation

Support Samples

Query Samples



Motivation


The text contains rich visual descriptions.

The American robin is renowned for its striking appearance, with a <u>rust-red to</u> <u>orange breast</u> and abdomen, a <u>dark grayish-blue upper body</u>, and a <u>white</u> <u>eye ring</u>. This <u>bird</u> plays a pivotal ecological role as a seed disperser, primarily for <u>fruits</u> and <u>berries</u>,...

Semantic Evolution (SemEvo)

we propose an automatic step-by-step Semantic Evolution process to acquire detailed and accurate semantics.

The framework of SemFew

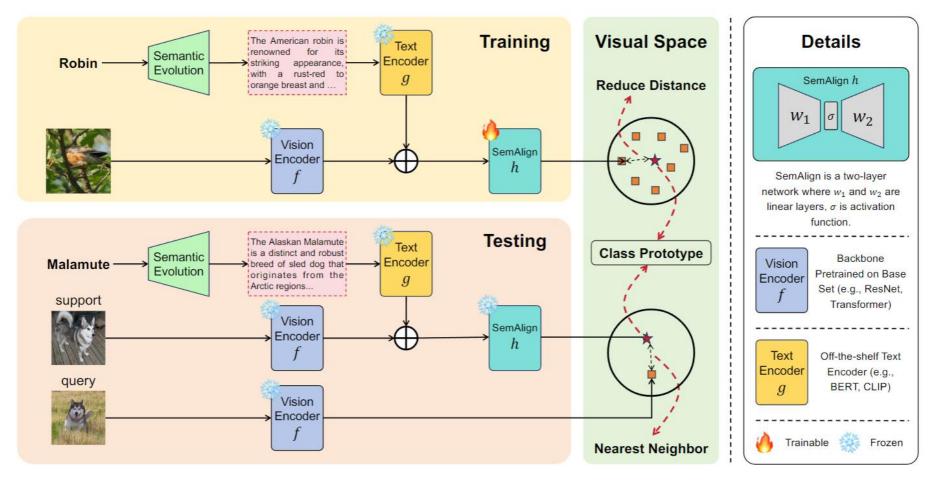


Figure 3. The framework of our proposed SemFew. During the training stage, images and paraphrased semantics are encoded and fed into SemAlign h, with the objective of reducing the distance between the output of h and the class prototype in the visual space. During the testing stage, images in the support set are transformed into class prototypes by h, and query images are classified by identifying the nearest prototype. The symbol \oplus denotes a concatenation operation.

Experimental results

Few-Shot Image Classification

84	Method	Venue	Backbone	MiniIn	nageNet	TieredIı	mageNet
	Method	venue	Backbone	5-way 1-shot	5-way 5-shot	5-way 1-shot	5-way 5-shot
	MatchNet [53]	NeurIPS'16	ResNet-12	65.64 ± 0.20	78.72 ± 0.15	68.50 ± 0.92	80.60 ± 0.71
	ProtoNet [46]	NeurIPS'17	ResNet-12	62.39 ± 0.21	80.53 ± 0.14	68.23 ± 0.23	84.03 ± 0.16
	MAML [13]	ICML'17	ResNet-12	49.24 ± 0.21	58.05 ± 0.10	67.92 ± 0.17	72.41 ± 0.20
ъ	TADAM [37]	NeurIPS'18	ResNet-12	58.50 ± 0.30	76.70 ± 0.30	62.13 ± 0.31	81.92 ± 0.30
se	CAN [20]	NeurIPS'19	ResNet-12	63.85 ± 0.48	79.44 ± 0.34	69.89 ± 0.51	84.23 ± 0.37
-B	CTM [29]	CVPR'19	ResNet-18	64.12 ± 0.82	80.51 ± 0.13	68.41 ± 0.39	84.28 ± 1.73
Visual-Based	RFS [49]	ECCV'20	ResNet-12	62.02 ± 0.63	79.64 ± 0.44	69.74 ± 0.72	84.41 ± 0.55
/isi	FEAT [60]	CVPR'20	ResNet-12	66.78 ± 0.20	82.05 ± 0.14	70.80 ± 0.23	84.79 ± 0.16
	Meta-Baseline [6]	ICCV'21	ResNet-12	63.17 ± 0.23	79.26 ± 0.17	68.62 ± 0.27	83.29 ± 0.18
	SUN [11]	ECCV'22	ViT-S	67.80 ± 0.45	83.25 ± 0.30	72.99 ± 0.50	86.74 ± 0.33
	FewTURE [19]	NeurIPS'22	Swin-T	72.40 ± 0.78	86.38 ± 0.49	76.32 ± 0.87	89.96 ± 0.55
	FGFL [7]	ICCV'23	ResNet-12	69.14 ± 0.80	86.01 ± 0.62	73.21 ± 0.88	87.21 ± 0.61
	Meta-AdaM [45]	NeurIPS'23	ResNet-12	59.89 ± 0.49	77.92 ± 0.43	65.31 ± 0.48	85.24 ± 0.35
*	KTN [38]	ICCV'19	Conv-128	64.42 ± 0.72	74.16 ± 0.56	74.16 ± 0.56)-
7	AM3 [57]	NeurIPS'19	ResNet-12	65.30 ± 0.49	78.10 ± 0.36	69.08 ± 0.47	82.58 ± 0.31
ISe	TRAML[28]	CVPR'20	ResNet-12	67.10 ± 0.52	79.54 ± 0.60	-	-
Ã,	AM3-BERT [59]	ICMR'21	ResNet-12	68.42 ± 0.51	81.29 ± 0.59	77.03 ± 0.85	87.20 ± 0.70
tic	SVAE-Proto [58]	CVPR'22	ResNet-12	74.84 ± 0.23	83.28 ± 0.40	76.98 ± 0.65	85.77 ± 0.50
Semantic-Based	SP-CLIP [5]	CVPR'23	Visformer-T	72.31 ± 0.40	83.42 ± 0.30	78.03 ± 0.46	88.55 ± 0.32
Ser	SemFew	Ours	ResNet-12	77.63 ± 0.63	83.04 ± 0.48	78.96 ± 0.80	85.88 ± 0.62
	SemFew-Trans	Ours	Swin-T	78.94 ± 0.66	86.49 ± 0.50	82.37 ± 0.77	89.89 ± 0.52

Table 1. Results (%) on MiniImageNet and TieredImageNet. The ± shows 95% confidence intervals. The best results are shown in bold.

Method	Venue	Backbone	CIFA	R-FS	FC100	
Memou	venue	Dackbolle	5-way 1-shot	5-way 5-shot	5-way 1-shot	5-way 5-shot
ProtoNet [46]	NeurIPS'17	ResNet-12	72.20 ± 0.70	83.50 ± 0.50	41.54 ± 0.76	57.08 ± 0.76
TADAM [37]	NeurIPS'18	ResNet-12	-	-	40.10 ± 0.40	56.10 ± 0.40
MetaOptNet [27]	CVPR'19	ResNet-12	72.80 ± 0.70	84.30 ± 0.50	47.20 ± 0.60	55.50 ± 0.60
MABAS [23]	ECCV'20	ResNet-12	73.51 ± 0.92	85.65 ± 0.65	42.31 ± 0.75	58.16 ± 0.78
RFS [49]	ECCV'20	ResNet-12	71.50 ± 0.80	86.00 ± 0.50	42.60 ± 0.70	59.10 ± 0.60
SUN [11]	ECCV'22	ViT-S	78.37 ± 0.46	88.84 ± 0.32	=	-
FewTURE [19]	NeurIPS'22	Swin-T	77.76 ± 0.81	88.90 ± 0.59	47.68 ± 0.78	63.81 ± 0.75
Meta-AdaM [45]	NeurIPS'23	ResNet-12	-	-	41.12 ± 0.49	56.14 ± 0.49
SP-CLIP [5]	CVPR'23	Visformer-T	82.18 ± 0.40	88.24 ± 0.32	48.53 ± 0.38	61.55 ± 0.41
SemFew	Ours	ResNet-12	83.65 ± 0.70	87.66 ± 0.60	54.36 ± 0.71	62.79 ± 0.74
SemFew-Trans	Ours	Swin-T	84.34 ± 0.67	89.11 ± 0.54	54.27 ± 0.77	65.02 ± 0.72

Table 2. Results (%) on CIFAR-FS and FC100. The ± shows 95% confidence intervals. The best results are shown in **bold**.

Experimental results

Cross-Domain Few-Shot Learning

Mathad	T 7	CI	U B	Places	
Method	Venue	1-shot	5-shot	1-shot	5-shot
GNN [43]	ICLR'18	45.69	62.25	53.10	70.84
S2M2 [32]	WACV'20	48.24	70.44	-	-
FT [51]	ICLR'20	47.47	66.98	55.77	73.94
ATA [55]	IJCAI'21	45.00	66.22	53.57	75.48
AFA [21]	ECCV'22	46.86	68.25	54.04	76.21
StyleAdv [14]	CVPR'23	48.49	68.72	58.58	77.73
LDP-net [64]	CVPR'23	49.82	70.39	53.82	72.90
SemFew-Name	Ours	57.58	72.26	63.22	74.54
SemFew	Ours	59.07	72.47	64.01	74.70

Table 3. Average results (%) on cross-domain scenarios. SemFew-Name denotes that semantics are class names.

Experimental results

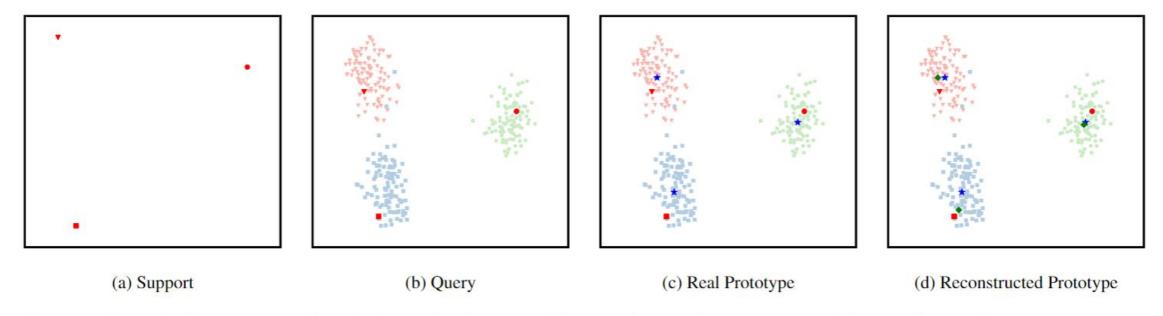


Figure 5. Visualization results on the MiniImageNet dataset. Different colors or shapes represent different classes. The * represents the class prototypes, and the \$\sqrt{}\$ denotes the prototypes reconstructed by our method.

Summary

- ◆ We propose a method for automatically collecting high-quality semantics and applying them in few-shot learning.
- We design a simple and efficient way to translate high-quality semantics and visual features into prototypes, without any intricate semantic understanding modules.
- ◆ Our approach achieves competitive performance across six benchmarks in FSL research, underscoring that a basic network can obtain excellent performance when supported by high-quality semantics.