

Promptable Behaviors: Personalizing Multi-Objective Rewards from Human Preferences

Minyoung Hwang^{1,2}, Luca Weihs¹, Chanwoo Park², Kimin Lee³, Ani Kembhavi¹, Kiana Ehsani¹

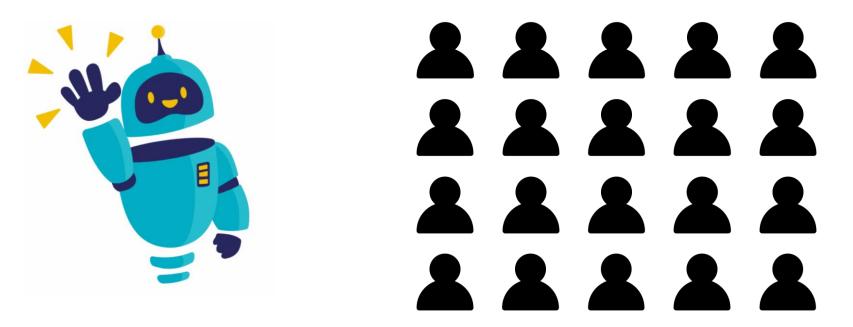
¹Allen Institute for AI, ²MIT, ³KAIST

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x<

Introduction

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

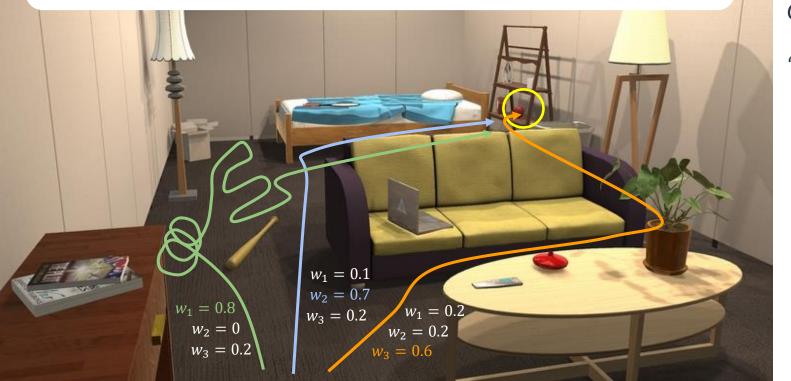
How can we effectively customize a robot for human users?



Introduction

Human's objective or preference can be described in various ways.

Introduction



ObjectNav Task:

"Find an apple."

Designing a Reward Function

Designing a new reward function for each user and re-training the agent is time-consuming.

Mujoco

MetaWorld

iTHOR

Introduction

Dynamics DoF, Size of State & Action

Task Difficulty

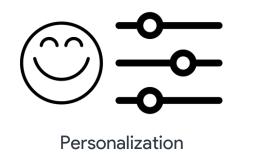
High

and the second second second second second

a second a second second second second

1. Can we personalize a policy for human preference over multiple objectives?

2. Can we efficiently estimate human preference over multiple objectives?



Tasks

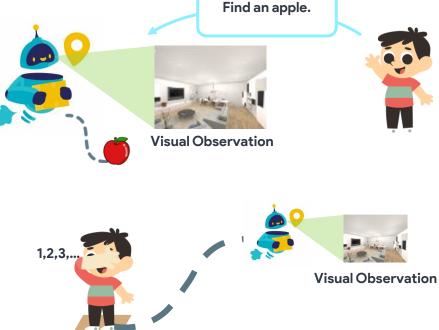
We introduce two personalized navigation tasks.

1) Personalized Object-Goal Navigation

Task: Find the target object while satisfying human's preference over the agent's behavior.

2) Personalized Flee Navigation

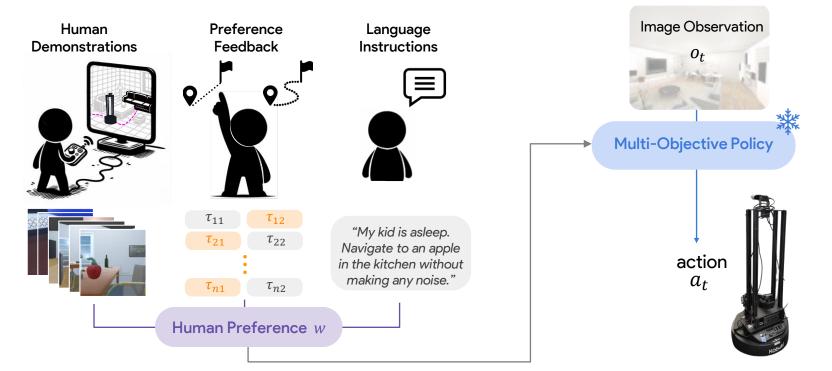
Task: Run away from the initial location while satisfying human's preference over the agent's behavior.



Promptable Behaviors

Methods

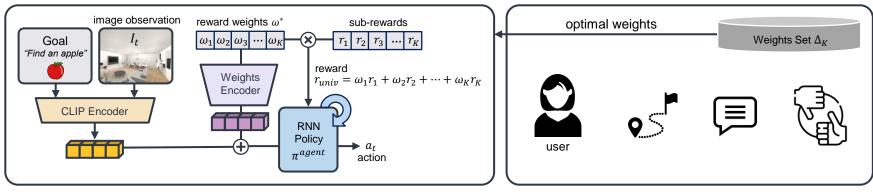
We propose *Promptable Behaviors*, a novel personalization framework that deals with diverse human preferences without re-training the agent.



Network Architecture

We take a modular approach:

- 1) Train a policy conditioned on a reward weight vector across multiple objectives
- 2) Predict the optimal weights of a human user given human demonstrations/preference feedback/language instructions



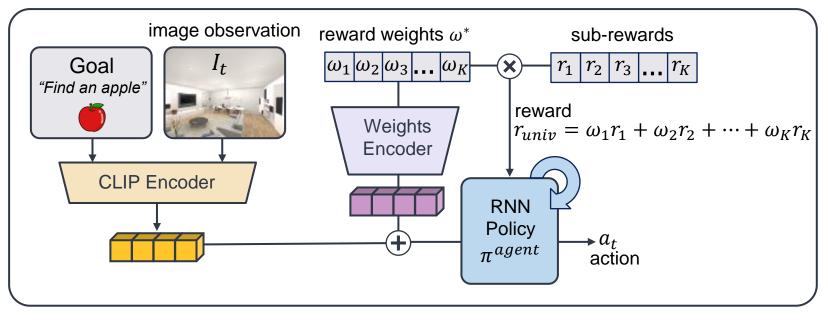
Multi-Objective Policy Training

Predicting Human Preference

Methods

Multi-Objective Policy Training

 Train a policy conditioned on a reward weight vector across multiple objectives We convert multi-objective RL to single-objective RL by reward scalarization

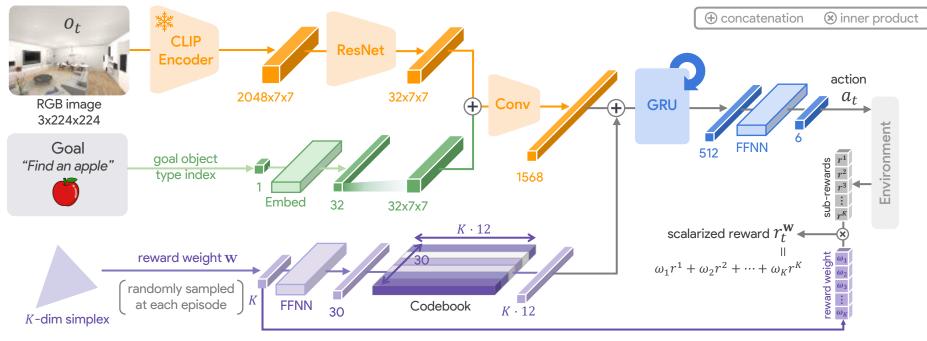


Methods

Network Architecture

Methods

Specifically, we use a codebook module to encode the reward weight vector.



 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

We perform two experiments in two environments (RoboTHOR and ProcTHOR). Experiment 1) Multi-Objective Policy Training

Preference Objectives:

(ObjectNav) Step Efficiency, Path Efficiency, House Exploration, Safety, and Object Exploration (FleeNav) Far from Initial, Step Efficiency, House Exploration, and Safety

Experiment 2) Predicting Reward Weights from

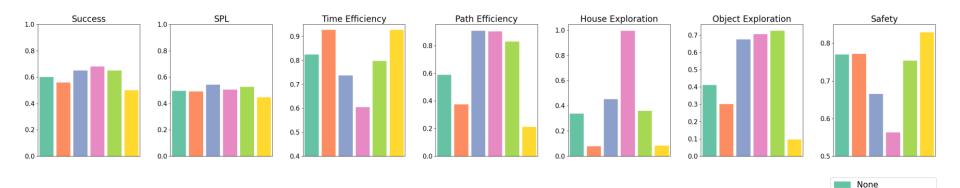
Human Demonstrations / Language Instructions / Trajectory Comparisons

RoboTHOR

ProcTHOR

Experiment 1 – ProcTHOR ObjectNav

Our method achieves high success rates while efficiently optimizing the agent behavior for each objective.



Time Efficiency Path Efficiency House Exploration

Safety

Experiment 1 – ProcTHOR ObjectNav

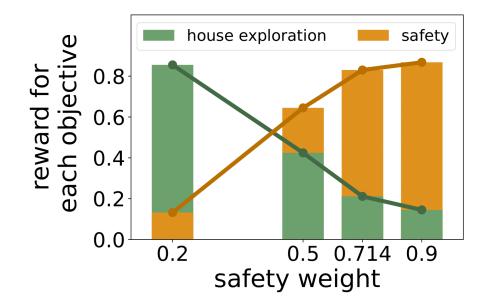
Our method achieves high success rates while efficiently optimizing the agent behavior for each objective.

Method	Multi-Objective	-Objective Prioritized Objective			SPL	Distance to Goal	Episode Length	Sub Rewards ↑				
				\uparrow	1	\downarrow	\downarrow	Time Efficiency	Path Efficiency	House Exploration	Object Exploration	Safety
EmbCLIP [32]	X	а	-	0.611	0.455	1.677	105.389	0.767	0.581	0.703	0.731	0.556
Prioritized EmbCLIP	Multi-Policy	b	Time Efficiency	0.560	0.445	2.803	52.060	0.926	0.317	0.136	0.247	0.746
		c	Path Efficiency	0.611	0.449	2.038	106.444	0.764	0.515	0.590	0.731	0.693
		d	House Exploration	0.200	0.113	3.921	350.960	0.033	0.677	2.868	0.161	0.012
		e	Object Exploration	0.611	0.513	2.439	138.389	0.668	0.414	0.703	0.731	0.556
		f	Safety	0.480	0.391	3.237	56.620	0.912	0.016	0.130	0.004	0.834
	Single-Policy	g	-	0.600	0.496	2.526	86.070	0.824	0.589	0.336	0.412	0.770
Promptable Behaviors		h	Time Efficiency	0.560	0.492	2.675	51.760	0.927	0.375	0.078	0.301	0.772
		i	Path Efficiency	0.650	0.543	2.213	115.350	0.737	0.907	0.451	0.674	0.665
		j	House Exploration	0.680	0.506	2.253	159.440	0.605	0.902	0.995	0.705	0.563
(Ours)		k	Object Exploration	0.650	0.525	2.198	94.890	0.798	0.829	0.358	0.725	0.754
		1	Safety	0.500	0.446	2.875	51.890	0.927	0.211	0.083	0.096	0.829

Table 1. **Performance in ProcTHOR ObjectNav.** We evaluate each method in the validation set with six different configurations of objective prioritization: uniform reward weight across all objectives and prioritizing a single objective 4 times as much as other objectives. Sub-rewards for each objective are accumulated during each episode, averaged across episodes, and then normalized using the mean and variance calculated across all methods. Colored cells indicate the highest values in each sub-reward column.

Experiment 1 – ObjectNav

As the safety weight increases, the safety reward increases while the exploration (conflicting objective) reward decreases.



Experiment 1 – ProcTHOR FleeNav

Evaluation results show that the policy is promptable by changing the reward weights.

Method	Multi-Objective	Prioritized Objective		Success	PLOPL	Distance to Furthest	Episode Length	Sub Rewards ↑		
				\uparrow	\uparrow	\downarrow	\downarrow	Time Efficiency	House Exploration	Safety
Prioritized EmbCLIP	Multi-Policy	а	Time Efficiency	0.691	0.810	7.360	57.090	0.875	0.420	0.138
		b	House Exploration	0.759	0.872	6.704	58.330	0.839	0.835	0.215
		с	Safety	0.723	0.856	7.391	57.640	0.859	0.676	0.487
Promptable	Single-Policy	d	-	0.700	0.805	7.013	69.020	0.531	0.365	0.522
Behaviors (Ours)		е	Time Efficiency	0.728	0.832	6.592	66.490	0.604	0.434	0.563
		f	House Exploration	0.737	0.861	6.317	71.500	0.460	0.813	0.089
		g	Safety	0.711	0.814	6.735	67.830	0.566	0.227	0.776

Table 2. **Performance in ProcTHOR FleeNav.** We evaluate each method in the validation set with five different configurations of objective prioritization: uniform reward weight across all objectives and prioritizing a single objective 3 times as much as other objectives. The displayed sub-reward values are normalized for each objective following Table 1.

Experiment 1 – Visualization

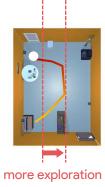
The agent shows different trajectories based on object prioritization.

Time Efficiency vs House Exploration

and the second second

a second second second

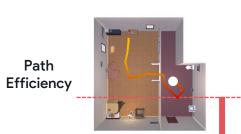
Time Efficiency



Path Efficiency vs House Exploration

and the second second

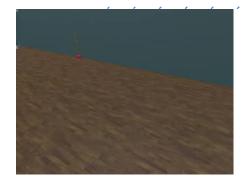
a second of the second second

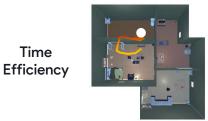


exploration

House Exploration

Time Efficiency vs Path Efficiency





Path Efficiency

Time

more rotation actions

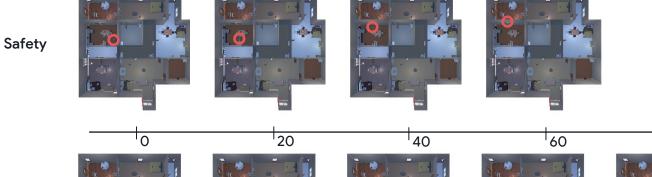
Time Efficiency vs Path Efficiency

Path Efficiency

moves closer to the wall

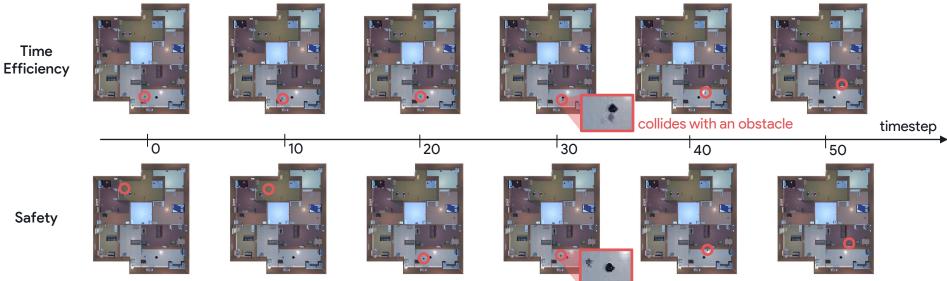
House Exploration vs Safety

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x



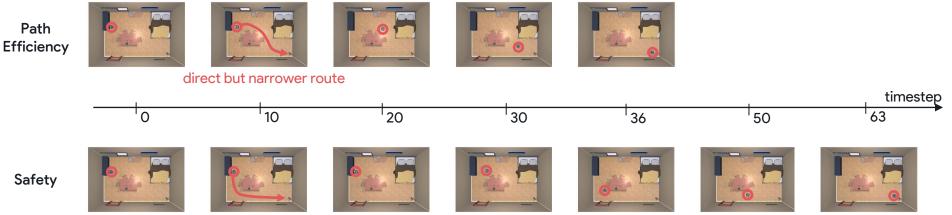
House Exploration visit new room

Time Efficiency vs Safety



Safety

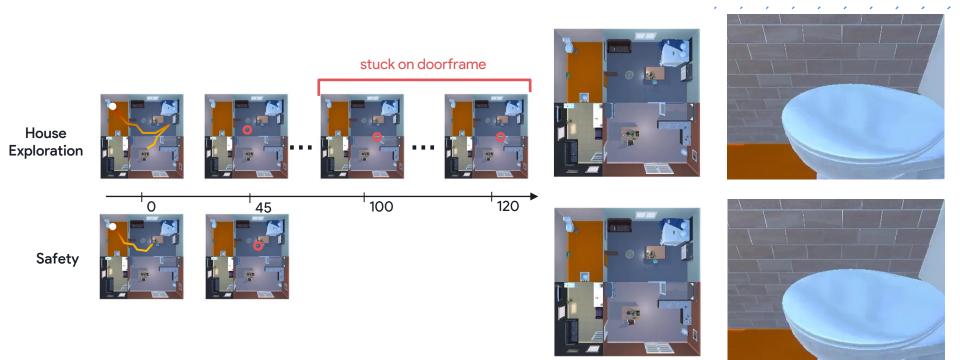
Path Efficiency vs Safety



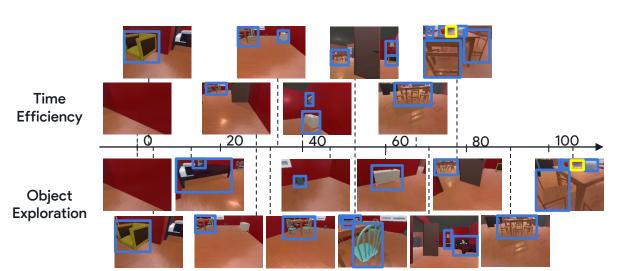
detour but wider route

House Exploration vs Safety

 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</t

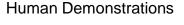


Time Efficiency vs Object Exploration



Human Preferences to Reward Weights

We provide a variety of options for users to provide their preferences to the agent. Specifically, we introduce three distinct methods of reward weight prediction.

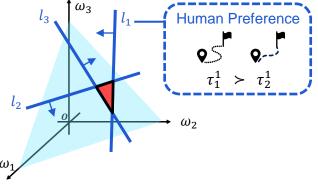


Language Instructions

"Move safely and don't collide with objects or walls."

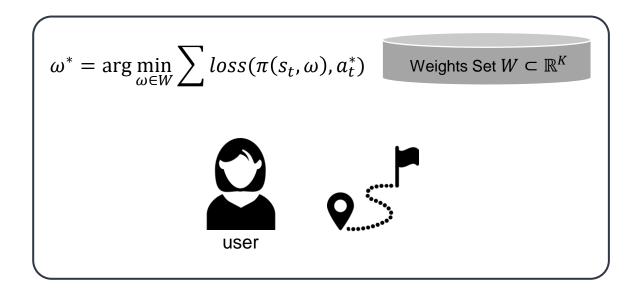
"Explore every room and try to search as much area as you can."

Human Feedback



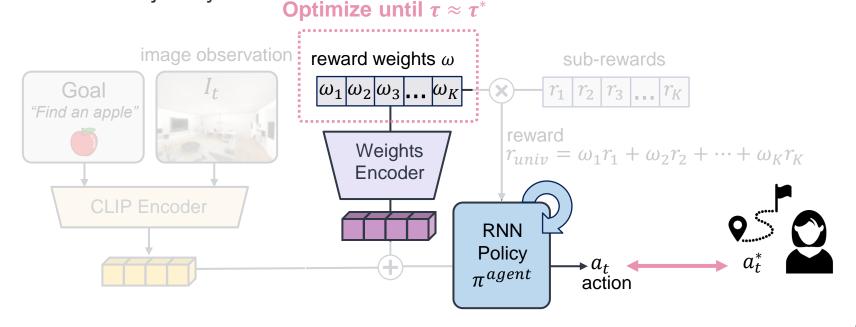
Human Demonstrations to Reward Weights

Predict the optimal weights of a human user given a single demonstration.



Human Demonstrations to Reward Weights

We optimize the reward weight vector until agent trajectory gets close enough to the demonstrated trajectory.



Methods

Methods

Language Instructions to Reward Weights

- Use LLM to generate data and predict reward weights
- Chain-of-Thought (CoT) reasoning / In-Context Learning (ICL)

"Prioritize examining objects, even if it takes longer."

or

"After rearranging the house, the user does not remember where certain objects were placed. The user wants to find a specific object, while also inspecting other areas to confirm the new arrangement."

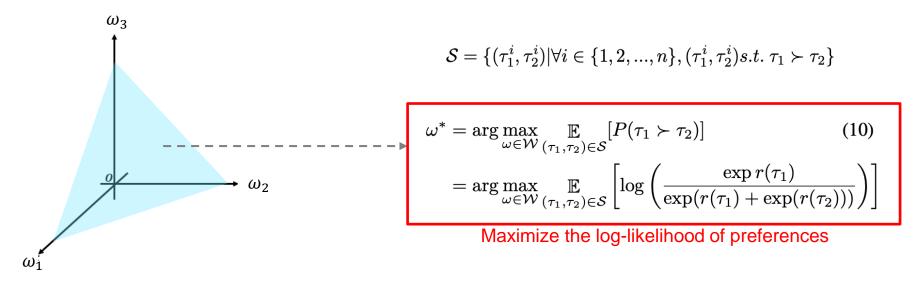
Task description Definition of objectives Infer reward weights for {instruction}

time efficiency: 0.1, path efficiency: 0.1, house exploration: 0.2, object exploration: 0.5, safety: 0.1

Human Preferences to Reward Weights

Pairwise Comparison

- Use preference data among N trajectory pairs and optimize the reward weights $\omega_1 + \omega_2 + \omega_3 = 1$ simplex



Methods

Human Preferences to Reward Weights

We also propose group trajectory comparison, which significantly reduces the formula labeling effort by allowing users to compare groups of trajectories. $\omega_1 + \omega_2 + \omega_3 = 1$ simplex

ωz $\tau_1 \succ \tau_2 := r(\tau_1) > r(\tau_2) = \omega^{\mathsf{T}} \vec{r}(\tau_1) > \omega^{\mathsf{T}} \vec{r}(\tau_2)$ (8) group ω_2 T_1 T_2 W)

Reward Weight Prediction Results

Utilizing preference feedback is the most accurate, while using language instructions is the simplest method.

Weight Predic	Sim *	GGI			
Input	Model	N	Sim ↑	661	
Human Demonstrations	-	1	0.707	0.347	
	Pairwise	20	0.356	0.800	
	Comparison	50	0.358	0.800	
	(M=1)	500	0.897	0.800	
Preference Feedback	Group	5	0.689	0.626	
	Comparison	10	0.793	0.618	
	(M=2)	25	0.935	0.657	
	Group	2	0.722	0.634	
	Comparison	4	0.682	0.762	
	(M=5)	10	0.862	0.641	
	ChatGPT	1	0.530	0.388	
Longuago Instructions	w/ ICL	1	0.529	0.379	
Language Instructions	w/ CoT	1	0.614	0.391	
	w/ ICL + CoT	1	0.482	0.347	

Weight	Win Rate ↑		
Input	N	will Kate	
Human Demo.	-	1	0.556
	Pairwise Comparison (M=1)	50	0.552
Preference Feedback	Group Comparison (M=2)	25	0.650
	Group Comparison (M=5)	10	0.588
Language Instruction	ChatGPT w/ CoT	1	0.600

Table 4. Human Evaluation on Scenario-Trajectory Matching

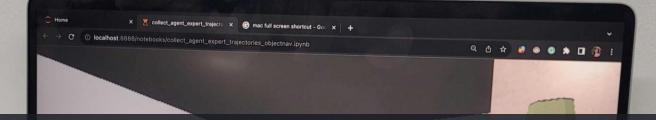
Table 3. Comparison of Three Weight Prediction Methods

- and the second second second
- × × × × · · · ·

- $N_{ij} = N_{ij} N$
-
- . . .
- X = X = X = X = X = X
- \times \times \times \times \times \times
-
- X = X = X = X = X = X = 0
- \times \times \times \times \times \times
- . . .
- $X_{ij} = X_{ij} = X$
-
- × × × × × ×
-

-

Full-Framework Demo



Demo – Human Demonstration

Demonstrate a trajectory that fits your preference. Max time horizon: 500

Scenario: "I just moved in and want to find which furniture or object is located while inspecting the layout of the house as a video."

MoveForward W TurnLeft s:Done e:Lookup X:Lookdown

Predicting Reward Weight from Human Demonstration ...

Finished! [Predicted Reward Weight]

time effiency : path efficiency : house exploration : object exploration : safety = 0.087 : 0.210 : 0.463 : 0.093 : 0.147

RGB Image Observation

Target Object: Basketball Choose the more preferred trajectory.

Demo – Preference Feedback (Pairwise Trajectory Comparison)

Scenario: "I want to check an appliance in the house while I'm away, but the robot has a low battery. I don't want the robot to waste its battery while looking into unnecessary regions."

Choose the more preferred trajectory.

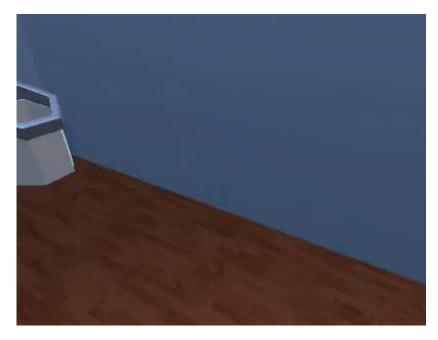
Trajectory 1

[Episode 1] Target Object: Basketball

Predicting Reward Weight from Preference Feedback on Pairwise Trajectory Comparisons ...

Finished! [Predicted Reward Weight]

time effiency : path efficiency : house exploration : object exploration : safety = 0.0 : 0.682 : 0.127 : 0.057 : 0.134



RGB Image Observation

Target Object: Basketball Choose the more preferred trajectory.

Demo – Preference Feedback (Group Trajectory Comparison)

Choose the more preferred trajectory group.

Group 1

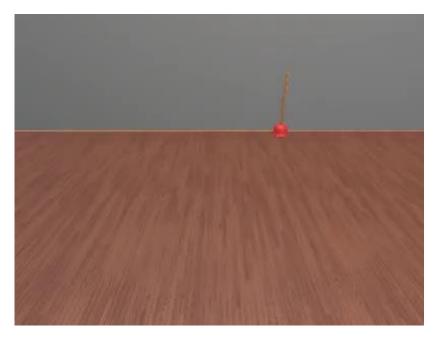
Safety weight ≥ 0.5

House Exploration weight ≥ 0.5

Predicting Reward Weight from Preference Feedback on Group Trajectory Comparisons ...

Finished! [Predicted Reward Weight]

time effiency : path efficiency : house exploration : object exploration : safety = 0.029 : 0.813 : 0.036 : 0.051 : 0.071

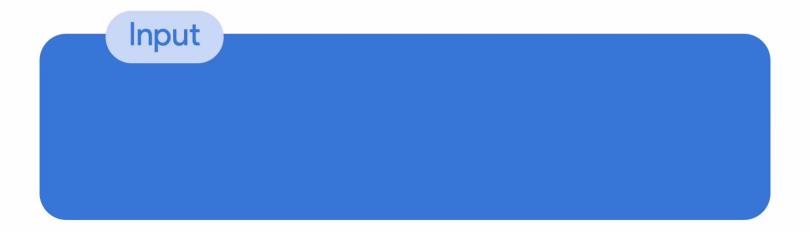


RGB Image Observation

Demo – Language Instruction

kitchen without making any noise.

Write down your language instruction to the robot.



Predicting Reward Weight from Language Instruction ...

Finished! [Predicted Reward Weight]

time effiency : path efficiency : house exploration : object exploration : safety = 0.1: 0.1: 0.1: 0.1: 0.6

RGB Image Observation

Contributions

 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

- A novel framework for personalized learning that enables robots to align with diverse human preferences in complex embodied AI tasks without any policy fine-tuning.
- 2) Three methods for **inferring human preferences** using human demonstrations, preference feedback on trajectory comparisons, and language instructions, each offering unique advantages.
- 3) Demonstrations in two long-horizon personalized navigation tasks shows the effectiveness of our approach in prompting agent behaviors to satisfy human preferences.

- and the second second
- ∞ , ∞ , ∞ , ∞ , ∞ , ∞
-
-

- $X_{ij} = X_{ij} = X$
- X X X X X X X
- **.** . .
- X = X = X = X = X = X = X
-
- N. N. N. N. N. N.
- ~ ~ ~ ~ ~ ~ ~
-
- . . .
- $(N_{1},N_{2},N_{$
-

- a since a since

Thank you.

Code, Paper, and Visualizations available at:

Project Website

