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Model) can be used for 
regional captioning.

Thus we proposed a 
lightweight query-based 
feature mixer to connect 
SAM with Causal 
Language Model.

Project Page & Code

Segment and Caption Anything
Xiaoke Huang1, Jianfeng Wang2, Yansong 

Tang1, Zheng Zhang2, Han Hu2,
Jiwen Lu1, Lijuan Wang2, Zicheng Liu3

1Tsinghua University, 2Microsoft, 3AMD

Introduction

Method

Comparison

Pre-train or not

Anything Mode

Training Recipe



i-VisionGroup

2



i-VisionGroup

3

 Intro

 Preliminary

◼ Task: Image/Dense Caption

◼ Model: SAM / Language Modeling

Method

 Results

 Conclusion, and What’s Next?

Outline



i-VisionGroup

4Task

Promptable Seg & Cap System
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 Task: Image/Dense Caption

Model: SAM / Language Modeling

Preliminary
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 Task: Image/Dense Caption

Preliminary

DenseCap: Fully Convolutional Localization Networks for Dense Captioning



i-VisionGroup

8

 Task: Image/Dense Caption

Model: Image encoder + Causal Language Model

 The Evaluation metrics are hard.

◼ Localization + description

Preliminary

DenseCap: Fully Convolutional Localization Networks for Dense Captioning

GRiT: A Generative Region-to-text Transformer for Object Understanding
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 SAM’s Model

 Learn about Model and Training Recipe

Preliminary
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 SAM’s Mask Decoder

 Feature Mixer: DETR

Preliminary
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1. The Feature Mixer 2. Mask Decoding Head
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 SAM’s Mask Decoder

 Feature Mixer: DETR

Preliminary

Segment Anything

End-to-End Object Detection with Transformers

1. The Feature

Mixer

2. Mask Decoding

Head

1. The Feature Mixer 2. Box Decoding Head
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 Language Modeling:

◼ Modeling the dist. of language (Markov Chain)

Preliminary

https://docs.cohere.com/docs/introduction-to-large-language-models



i-VisionGroup

15

 Language Modeling:

◼ Autoregressive + Transformer Decoder

Preliminary

http://jalammar.github.io/illustrated-gpt2/
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 Language Modeling:

◼ Causal Language Model: a special form of masked modeling (Bert)

Preliminary

http://jalammar.github.io/illustrated-gpt2/
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 SAM as a data engine:

 hypothesis:

◼ Though there is an absence of semantic labels, can SAM still implies 

high-level semantics sufficient for captioning?

Motivation

Segment Anything
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 Implementation details
◼ Direct Train on VG for 200K steps

◼ 100K Pretrain O365/COCO +

100K Finetune on VG

◼ 64 V100 GPUs to pre-train

32 V100 GPUs to finetune

Method
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 Dataset

Metrics

◼ Reference-based metrics: Cider-D, METEOR, ROUGE, BLEU, …

◼ Noun / Verb IOU

Results
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 Dataset: Visual Genome

Results

Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image 

Annotations
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 Dataset: Visual Genome
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 Comparison w/ Baselines

Results
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 Comparison w/ Baselines

Results

(1) SAM+Captioner {GIT-large, BLIP-large, BLIP2-OPT-2.7B}, (2) GRIT [89], (3) SCA {GPT2-
large+VG, LLAMA-3B+VG, GPT2- large+Pretrain+VG}, and (4) the ground truth.
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 Comparison w/ Baselines and Large Multimodal Model (LMM)

Results
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 Ablations:

Results

All exp. were conducted with 8 V100 GPUs.
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 Ablations:

Results

All exp. were conducted with 8 V100 GPUs.
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Conclusions

Conclusion, and What’s Next?
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What’s Next?

 Solve Limitations:

◼ wrong attribute prediction, 

◼ distinguishing similar visual concepts, 

◼ and alignment with mask predictions.

 We hope this work serves as a stepping stone towards scaling regional 

captioning data 

 and exploring emerging abilities in vision from low-level data or pre-

trains.

Conclusion, and What’s Next?
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