

# Learning to Remove Wrinkled Transparent Film with Polarized Prior

Jiaqi Tang, Ruizheng Wu, Xiaogang Xu, Sixing Hu, and Ying-Cong Chen\*

jtang092@connect.hkust-gz.edu.cn, {ruizheng.wu, david.hu}@smartmore.com,

xiaogangxu00@gmail.com, \*yingcongchen@ust.hk

#### 通过偏振先验去除褶皱透明薄膜















#### Motivation: Problem in Industry Vision

#### Covered by Wrinkled Transparent Film



with Wrinkled Film







## Motivation: Problem in Industry Vision

#### Film Removal (FR)

- To remove the interference of wrinkled transparent films.
- To reconstruct the original information under films.





#### Physics Model of the Wrinkled Transparent Film

















- > [Observation] Specular Reflection (Highlight)  $I_h$  is Polarized.
- $\succ$  [Solution] Estimating a Polarized Prior for Locating  $I_h$
- $\blacktriangleright$  The Prior is:  $P = I_m + I_d + \min I_h$
- The polarized version of the prior, can be acquired with <u>Malus's Law</u> and the <u>elliptical polarization model</u>, therefore:

$$\overline{I_h = I_p(\theta)} = I_{max} \cos^2\theta + I_{min} \sin^2\theta$$

Since  $I_h$  is the only polarized component that is determined by  $\theta$ , P can also be formulated as:  $P = I_m + I_d + \min I_h$ 

$$=I_{m}+I_{d}+\min_{ heta}I_{p}\left( heta
ight)$$

$$=I_m+I_d+\min_{ heta}\left(I_{max}\cos^2 heta+I_{min}\sin^2 heta
ight)$$

for Specular Highlight: Use Polarized Light to Locate



Finally, we estimate pixel-wise  $\theta$ , with a learning-based network (A-Net), to obtain the angle map A:

 $A = f_A (I_{input}^{0} \oplus I_{input}^{45} \oplus I_{input}^{90} \oplus I_{input}^{135} \oplus S_{AoP} \oplus S_{DoP})$ 





# for Other Degradations



- $\succ$  [Solution] Reconstructing  $I_m$
- > To recover the image, we set a reconstruction network  $f_r$  to decouple both  $I_d$  and  $I_h$ , with P.
- > The reconstruction process can be expressed as:

$$I_{rec} = f_r (I_{input}^0 \oplus I_{input}^{45} \oplus I_{input}^{90} \oplus I_{input}^{135} \oplus P)$$



## How to Collect Data? – Capture at Industrial Pipeline



Industrial Optical Photography Pipeline







# How to maintain the Data Diversity and Robustness?

- > 315 dynamic industrial scenarios.
- Three types: QR codes, text, and products.
- > **Diverse properties**: coverage areas, film thicknesses, levels of wrinkling.
- **Fix**: to minimize the influence of errors external.





#### Quantitative Comparison

|                |             | <b>K</b> 1 | K2     | K3     | <b>K</b> 4 | K5     | K6     | K7     | K8     | K9     | K10    | $\mu\uparrow$ | $\sigma\downarrow$   |
|----------------|-------------|------------|--------|--------|------------|--------|--------|--------|--------|--------|--------|---------------|----------------------|
| SHIQ [6]       | PSNR        | 23.47      | 22.11  | 21.95  | 21.69      | 21.77  | 21.03  | 20.86  | 20.46  | 21.10  | 21.31  | 21.58         | 0.64                 |
|                | SSIM        | 0.7899     | 0.7640 | 0.7416 | 0.7439     | 0.7459 | 0.7465 | 0.7499 | 0.7412 | 0.7465 | 0.7300 | 0.7499        | $2.41\times 10^{-4}$ |
| Polar-HR [34]  | PSNR        | 23.31      | 22.80  | 22.13  | 21.58      | 21.94  | 22.00  | 22.03  | 21.99  | 22.18  | 21.95  | 22.19         | 0.22                 |
|                | SSIM        | 0.7642     | 0.7421 | 0.7220 | 0.7099     | 0.7064 | 0.7098 | 0.7128 | 0.7017 | 0.7102 | 0.6968 | 0.7176        | $3.80\times10^{-4}$  |
| Uformer [33]   | PSNR        | 31.85      | 31.95  | 31.39  | 31.19      | 31.81  | 32.04  | 31.68  | 31.98  | 31.85  | 31.01  | 31.68         | 0.11                 |
|                | SSIM        | 0.9519     | 0.9456 | 0.9371 | 0.9364     | 0.9434 | 0.9421 | 0.9438 | 0.9435 | 0.9457 | 0.9363 | 0.9426        | $2.17\times10^{-5}$  |
| Restormer [41] | PSNR        | 34.35      | 35.02  | 34.44  | 33.71      | 34.88  | 35.13  | 34.31  | 34.33  | 34.51  | 32.49  | 34.32         | 0.52                 |
|                | SSIM        | 0.9771     | 0.9770 | 0.9721 | 0.9678     | 0.9757 | 0.9746 | 0.9742 | 0.9741 | 0.9759 | 0.9633 | 0.9731        | $1.75\times10^{-5}$  |
| Ours           | <b>PSNR</b> | 36.76      | 37.29  | 36.62  | 35.12      | 36.93  | 37.21  | 36.24  | 36.67  | 36.94  | 35.02  | 36.48         | 0.57                 |
|                | SSIM        | 0.9852     | 0.9859 | 0.9822 | 0.9767     | 0.9845 | 0.9833 | 0.9836 | 0.9830 | 0.9850 | 0.9749 | 0.9824        | $1.23 	imes 10^{-5}$ |

[Table 1] Quantitative evaluation in image reconstruction with 10-fold cross-validation.



#### Qualitative Evaluation



[Figure 1] Qualitative Evaluation in image reconstruction.



# Qualitative Evaluation in Industrial Environment



[Figure 2-3] Qualitative Evaluation in Industrial Environment. (QR Reading & Text OCR)



#### Ablation Study





Quantitative evaluation in Ablation Study



w/o Polarization Information



# Thanks

28/04/2024

