

Efficient Dataset Distillation via Minimax Diffusion

Jianyang Gu¹, Saeed Vahidian², Vyacheslav Kungurtsev³, Haonan Wang⁴, Wei Jiang¹, Yang You⁴, Yiran Chen²

¹ Zhejiang University, ² Duke University, ³ Czech Technical University, ⁴ National University of Singapore

Background

Previous DD methods engage in sample-wise optimization at the pixel level or embedidng level. Such scheme suffers from problems of two perspectives:

- 1) The parameter space is positively correlated with the size of the target surrogate dataset, leading to more time and computational resource demands for distilling larger datasets.
- 2) The larger parameter space also increases the optimization complexity. Distilling larger-IPC datasets generates smaller pixel modifications.

We intend to incorporate diffusion models to design a more efficient dataset distillation scheme.

Empirical Study

Good in diveristy, but not emphasizing the high-density area

The representativeness is good, but lacking diversity

Method

 $M:$ storing original embeddings : storing predicted embeddings

Algorithm 1: Minimax Diffusion Fine-tuning

Input: initialized model parameter θ , original dataset $\mathcal{T} = \{(\mathbf{x}, y)\}\,$ encoder E, class encoder E_c , time step t, variance schedule $\bar{\alpha}_t$, real embedding memory M , predicted embedding memory D **Output:** optimized model parameter θ^* for each step do Obtain the original embedding: $z_0 = E(x)$ Obtain the class embedding: $\mathbf{c} = E_c(y)$ Sample random noise: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ Add noise to the embedding: $\mathbf{z}_t = \sqrt{\bar{\alpha}_t} \mathbf{z}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon$ Predict the noise $\epsilon_{\theta}(\mathbf{z}_t, \mathbf{c})$ and recovered embedding $\hat{\mathbf{z}}_{\theta}(\mathbf{z}_t, \mathbf{c}) = \mathbf{z}_t - \epsilon_{\theta}(\mathbf{z}_t, \mathbf{c})$ Update the model parameter with Eq. (5) Enqueue the real embedding: $\mathcal{M}_r \leftarrow z_0$ Enqueue the predicted embedding: $\mathcal{M}_d \leftarrow \hat{\mathbf{z}}_{\theta}(\mathbf{z}_t, \mathbf{c})$ end

$$
\mathcal{L}_r = \arg \max_{\theta} \min_{m \in [N_M]} \sigma(\hat{\mathbf{z}}_{\theta}(\mathbf{z}_t, \mathbf{c}), \mathbf{z}_m).
$$

$$
\mathcal{L}_d = \arg \min_{\theta} \max_{d \in [N_D]} \sigma(\hat{\mathbf{z}}_{\theta}(\mathbf{z}_t, \mathbf{c}), \mathbf{z}_d).
$$

Experiments

Minimax diffusion surpasses other methods with much less requirement on training time and computational resources.

Experiments

The representativeness constraint improves performance on small IPCs. The diveristy constraint brings larger performance improvement. But grouping them together achieves the best performance.

Experiments

Minimax diffusion leads to better representativeness and diversity for the generated images.

Thanks