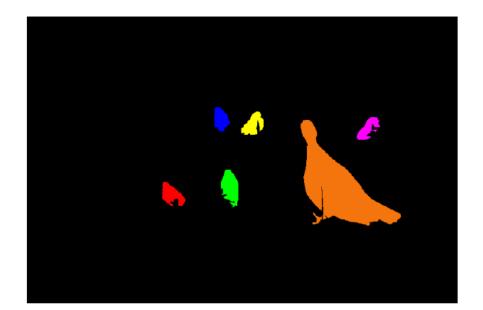
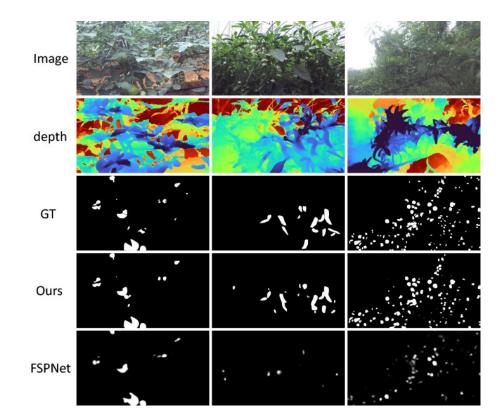


Depth-Aware Concealed Crop Detection in Dense Agricultural Scenes

Liqiong Wang^{1†}, Jinyu Yang^{2,3†}, Yanfu Zhang⁴, Fangyi Wang^{1*}, Feng Zheng^{2*} Poster: THU-PM-252

¹China Three Gorges University, ²Southern University of Science and Technology, ³University of Birmingham, ⁴College of William and Mary

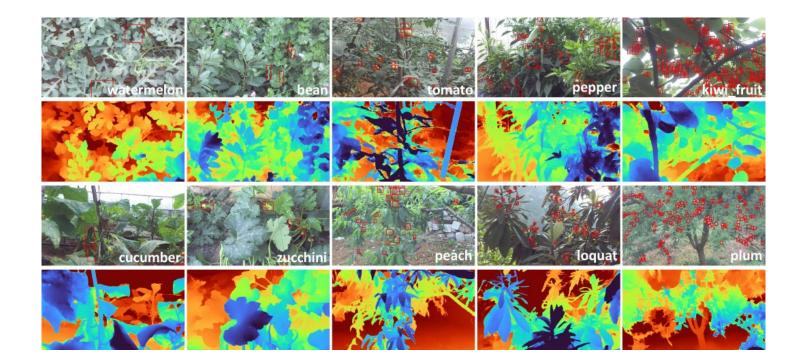



Background

Concealed Object Detection (COD) aims to identify objects that are visually embedded in their background.

Limitation

We mainly focus on concealed objects in dense agricultural scenes, which pose unique challenges:

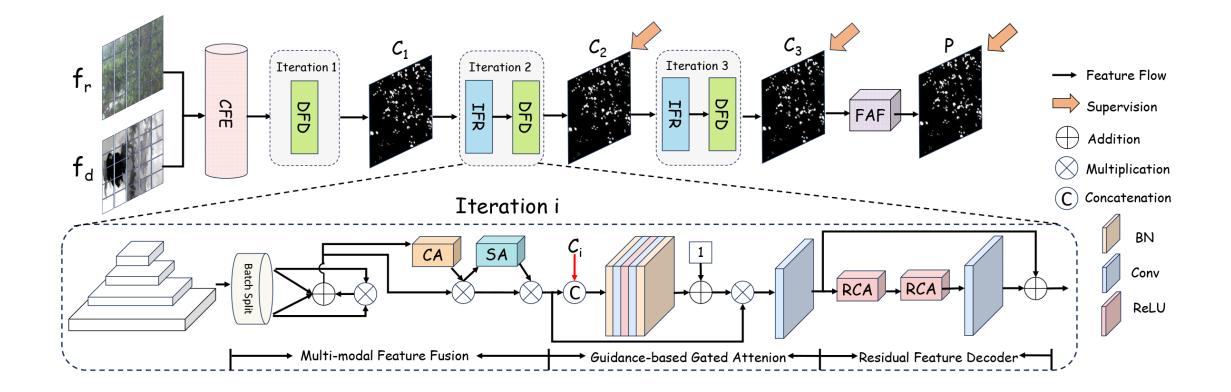

- > Dense objects
- Intricate backgrounds
- Severe occlusion
- Small objects

Introduction

Dataset	Year	Img	Av	g.Res.	Free View	Mul.	Obje Total				Link
CHAMELEON[50]	2018	76	742	\times 981	×	×	79	1	1	3	N/A
CAMO[34]	2019	1250	509	\times 653	1	×	1368	1	1	7	Link
COD10K[13]	2020	5066	737	\times 964	1	×	5899	1	1	8	Link
NC4K[42]	2021	4121	530	\times 709	1	×	4584	1	1	8	Link
ACOD-12K(Ours)	2023	6092	1080	\times 1920		\checkmark	71417	1	11	412	Link

- This paper aims to address the overlooked challenge of detecting small, concealed crops amidst dense plant populations and occlusions in the agricultural domain.
- Existing COD methods primarily focus on animals or humans, and this paper aims to bridge this gap by introducing Concealed Crop Detection (CCD) and developing novel techniques to help detection in this area.

Dataset


To facilitate research on CCD, we propose our ACOD-12K.

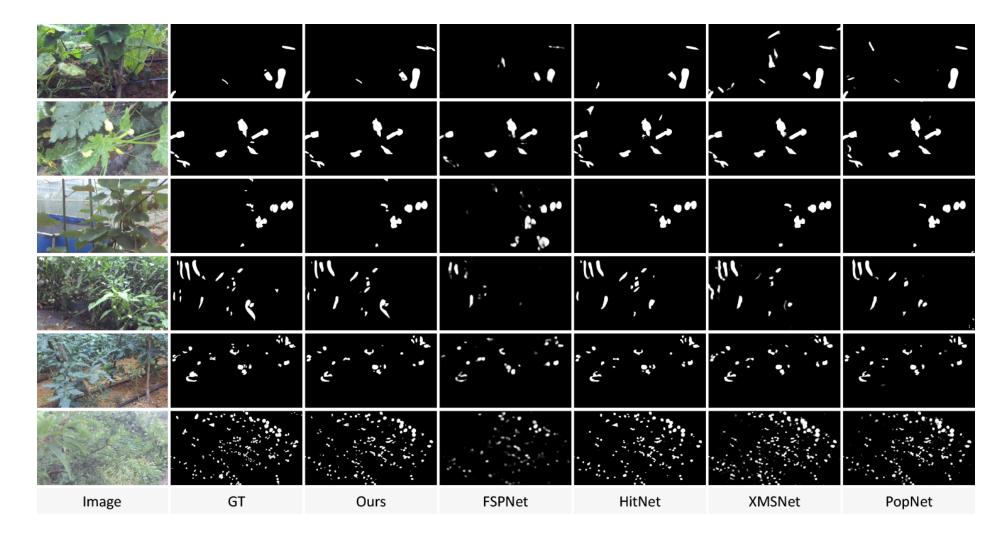
- The sole existing multi-modal COD dataset.
- The largest-scale COD dataset.
- Higher object density.
- Focus on the distinctive challenges presented by concealed objects in dense agricultural scenes.

Contribution

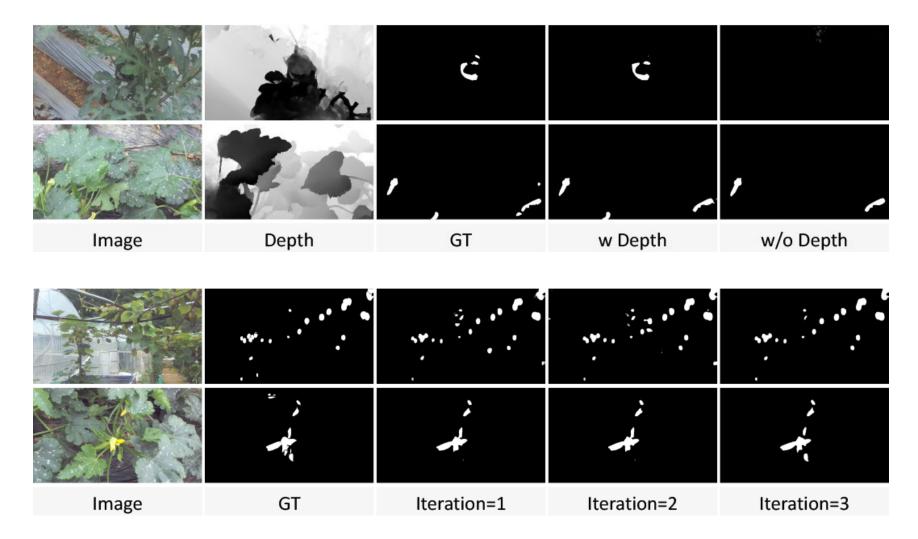
- Introduce Concealed Crop Detection (CCD), extending classic COD to agriculture.
- Collect a new large-scale RGB-D dataset ACOD-12K, which is the first multi-modal dataset on COD tasks.
- Develop a new baseline **RISNet**, which fuses depth features for CCD and achieves SOTA on COD and CCD.

The proposed framework

Comparison with SoTA COD methods


Quantitative comparisons on CCD

Model	Publications	ACOD-12K								
Widdel	Publications	$S_{\alpha}\uparrow$	$F^{\omega}_{\beta} \uparrow$	$E_{\theta} \uparrow$						
Concealed Object Detection										
SINet[13]	CVPR20	0.745	0.474	0.826						
MGL[67]	CVPR21	0.808	0.685	0.872						
PFNet[45]	CVPR21	0.805	0.685	0.942						
UGTR[65]	ICCV21	0.798	0.632	0.858						
SINet-V2[14]	TPAMI22	0.804	0.691	0.947						
C2FNet[7]	TCSVT22	0.833	0.746	0.947						
PreyNet[69]	MM22	0.832	0.760	0.937						
SegMaR[31]	CVPR22	0.799	0.677	0.930						
ZoomNet[49]	CVPR22	0.832	0.747	0.934						
DaCOD[57]	MM23	0.803	0.705	0.910						
PopNet[61]	ICCV23	0.844	0.778	0.955						
HitNet[26]	AAAI23	0.853	0.787	0.955						
FSPNet[28]	CVPR23	0.719	0.526	0.819						
RGB-D Salient Object Detection										
CLNet[68]	ICCV21	0.826	0.747	0.936						
SPNet[74]	ICCV21	0.818	0.731	0.949						
DCMF[54]	TIP22	0.779	0.631	0.872						
HINet[6]	PR22	0.776	0.651	0.853						
SPSN[35]	ECCV22	0.834	0.739	0.930						
CIRNet[9]	TIP22	0.794	0.675	0.865						
HIDANet[60]	TIP23	0.822	0.734	0.950						
XMSNet[62]	MM23	0.844	0.754	0.961						
Ours		0.866	0.803	0.967						


Quantitative comparisons on COD

Model	Publications	САМО				COD10K				NC4K			
		$S_{lpha}\uparrow$	$F^{\omega}_{\beta}\uparrow$	$E_{\theta} \uparrow$	$M\downarrow$	$S_{lpha}\uparrow$	$F^{\omega}_{\beta}\uparrow$	$E_{\theta} \uparrow$	$M\downarrow$	$S_{\alpha} \uparrow$	$F^{\omega}_{\beta}\uparrow$	$E_{\theta} \uparrow$	$M\downarrow$
SINet[13]	CVPR20	0.745	0.644	0.804	0.092	0.776	0.631	0.864	0.043	0.808	0.723	0.871	0.058
LSR[42]	CVPR21	0.787	0.696	0.838	0.080	0.804	0.673	0.880	0.037	0.840	0.766	0.895	0.048
R-MGL[67]	CVPR21	0.775	0.673	0.812	0.088	0.814	0.666	0.852	0.035	0.833	0.740	0.867	0.052
JSCOD[36]	CVPR21	0.800	0.728	0.859	0.073	0.809	0.684	0.884	0.035	0.842	0.771	0.898	0.047
PFNet[45]	CVPR21	0.782	0.695	0.841	0.085	0.800	0.660	0.877	0.040	0.829	0.745	0.887	0.053
ZoomNet[49]	CVPR22	0.820	0.752	0.877	0.066	0.838	0.729	0.888	0.029	0.853	0.784	0.896	0.043
FDNet[73]	CVPR22	0.841	0.775	0.895	0.063	0.840	0.729	0.919	0.030	0.834	0.750	0.893	0.052
SegMaR[31]	CVPR22	0.815	0.753	0.874	0.071	0.833	0.724	0.899	0.034	0.841	0.781	0.896	0.046
DGNet[29]	MIR23	0.839	0.769	0.901	0.057	0.822	0.693	0.896	0.033	0.857	0.784	0.911	0.042
PopNet[61]	ICCV23	0.808	0.744	0.859	0.077	0.851	0.757	0.910	0.028	0.861	0.802	0.910	0.042
DaCOD[57]	MM23	0.855	0.796	0.905	0.051	0.840	0.729	0.907	0.028	0.874	0.814	0.924	0.035
HitNet[26]	AAAI23	0.844	0.801	0.902	0.057	0.868	0.798	0.932	0.024	0.870	0.825	0.921	0.039
FEDER[22]	CVPR23	0.822	0.738	0.886	0.067	0.851	0.716	0.917	0.028	0.863	0.789	0.917	0.042
FSPNet[28]	CVPR23	0.856	0.799	0.899	0.050	0.851	0.735	0.895	0.026	0.879	0.816	0.915	0.035
Ours		0.870	0.827	0.922	0.050	0.873	0.799	0.931	0.025	0.882	0.834	0.925	0.037

Qualitative results on ACOD-12K

Ablation Study

Thanks!