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Bottom-up attention:
• Free viewing (“taskless ”)
• Attention prioritization (saliency) 

solely based on information in the 
image input (e.g., feature contrast)

Top-down attention:
• Visual search (goal-directed)
• Attention prioritization based on an external goal and 

the image put

Microwave search Clock search

Free viewing Visual search
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Human attention: bottom-up vs top-down



Detectability map [Rashidi et al., NeurIPS 2020]
FFMs [Z. Yang et al., ECCV, 2022]
…

Saltinet [M. Assens et al., ICCV Workshops, 2017]
PathGAN [M. Assens et al., ECCV Workshops, 2018]
IOR-ROI-LSTM  [W. Sun et al., PAMI, 2019]
DeepGaze III [M. Kummerer et al.,JoV, 2022]
…

Free viewing
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Target-present 
clock search CFI [Zelinsky et al., CVPR Workshops, 2019]

IRL [Z. Yang et al., CVPR, 2020]
VQA  [X. Chen et al., CVPR, 2022]
Gazeformer [S. Mondal et al., CVPR, 2023]
…

Target-absent 
clock search

Bottom-up

Top-down

Scanpath prediction



Free viewing
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Target-present 
clock search

Target-absent 
clock search

Bottom-up

Top-down ?

Can a single model 
architecture predict both 
bottom-up and top-down 

scanpath?

Scanpath prediction



Limitation of existing approaches

• Traditional approaches have leaned on recurrent neural networks (RNNs) to uphold a 
dynamically updated hidden vector conveying information across fixations
• PathGAN [M. Assens et al., ECCV Workshops, 2018]
• IOR-ROI-LSTM  [W. Sun et al., PAMI, 2019]
• VQA  [X. Chen et al., CVPR, 2022]

• Alternatively, simulations of a foveated retina have combined multi-resolution information 
at pixel, feature, or semantic levels
• CFI [Zelinsky et al., CVPR Workshops, 2019]
• IRL [Z. Yang et al., CVPR, 2020]
• FFMs [Z. Yang et al., ECCV, 2022]

• Drawbacks
• RNNs sacrifice interpretability
• Multi-resolution simulations fall short in capturing crucial temporal and spatial 

information integration
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Limitation of existing approaches

Classification
Networks

action spaceinput image

• Cannot model fixations within the same cell, which occurs more often for high-res inputs:
• For a 320x512 image with a 10x16 action space: a cell = 32x32 pixels
• For a 1050x1680 image with a 10x16 action space: a cell = 105x105 pixels

• Existing methods use classification networks that discretize the space of all possible fixation locations 
as a coarse grid, which is invariant to input resolution and hence compromises accuracy.

Classification
Networks
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Transformer
Encoder

Peripheral Tokens

Foveal Tokens

Foveated Working 
Memory

Previous Fixations

𝜆×𝐶

…

• Clock-Search Query

• TV-Search Query

• Mouse-Search Query

…

Cross 
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Termination Predictions
𝑁×1

𝑁×𝐶

upsample
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Fixation Heatmaps
𝑁×𝐻×𝑊

• Clock-Search Fixation Map
…

• TV-Search Fixation Map

• Mouse-Search Fixation Map

Feature Extraction Module

Foveation Module

Aggregation Module

Fixation Prediction Module

Human Attention Transformer (HAT)
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Foveated working memory

• We construct the working memory by 
starting with the visual embeddings
(“what”) flattened from P1 over the 
spatial axes and selected from P4 at 
previous fixation locations. 

• Scale embedding is introduced to 
capture scale information. 

• Spatial embeddings and temporal 
embeddings are further added to the 
tokens to enhance the “where” and 
“when” signals. 
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Experiments: quantitative results 

• FWM has the best performance overall and surpasses “Human” in the TP and TA settings. 9
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Experiments: quantitative results 

• FWM significantly outperforms all other methods in cAUC over all settings.
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Target-present bottle search

HAT (ours)Human FFMs (ECCV22’)

Chen et al (CVPR21’) IRL (CVPR20’) Detector

Experiments: quantitative results 
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Experiments: quantitative results 
Target-absent stop sign search

HAT (ours)Human FFMs (ECCV22’)

Chen et al (CVPR21’) IRL (CVPR20’) Detector 12



Experiments: quantitative results 
Free viewing

HAT (ours)Human FFMs (ECCV22’)

Chen et al (CVPR21’) IRL (CVPR20’) Detector 13



1st fixation
𝜏 = 0

Peripheral contribution map Predicted fixation heatmapPredicted scanpath

HAT captures contextual cues

𝜏 is the termination prediction probability.

Target-present laptop search

2nd fixation

𝜏 = 0.332
3rd fixation

𝜏 = 0.249

4th fixation

𝜏 = 0.374
5th fixation

𝜏 = 0.541
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HAT captures contextual cues
Target-absent laptop search

1st fixation
𝜏 = 0

2nd fixation

𝜏 = 0.061

3rd fixation

𝜏 = 0.294
4th fixation

𝜏 = 0.330

5th fixation

𝜏 = 0.855

Peripheral contribution map Predicted fixation heatmapPredicted scanpath
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Summary

• With HAT, our model’s prediction is not only accurate but also 
interpretable.

• HAT achieves the new SOTA in predicting the scanpath of fixations made 
during target-present and target-absent search, and reaches or exceeds 
SOTA in the prediction of “taskless” free-viewing fixation scanpaths.
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