# **CFAT: Unleashing Triangular Windows for Image** Super-resolution





- The shifted-rectangular window has limited number of unique shifting modes due to rotational repeatation.
  - We are the first to introduce the triangular window-based self-attention mechanism in the computer vision task that exibits more non-identical shifting modes than the conventional rectangular one.
- The use of rectangular window technique in Image SR also results boundary-level distortion due to insufficient neighboring pixels at rectagular boundaries.
  - $\checkmark$  We smoothly integrate the proposed triangular window with traditional rectangular windows to employ non-overlapping self-attention in single-image SR.
  - It not only eradicate the boundary-level distortion but also execute the multiregion attention.
- The smaller window reduces the computational complexity with a heavy penalty on performances due restricted receptive field.
  - We introduce two variants of triangular window attention: (i) dense and (ii) sparse. The dense and sparse attention concentrate more on local image features and global image context respectively.





Figure 1: Shifting modes of rectangular and triangular windows in a  $64 \times 64$  image patch

#### **Design of Triangular & Rectangular Windows**





Figure 2: A rectangular and triangular patch in  $32 \times 32$  window.

# **CFAT vs SOTA Models**





Figure 3: Proposed CFAT vs other SOTA models

CFAT(Paper ID-12800)

#### **Model Architecture**





Figure 4: The overall architecture of CFAT with all internal modules

#### Model Equations



# ① Dense Window Attention Blocks [DWAB]:

$$\begin{split} F_{dp} = & f_{conv}(f_{op}(f_{nop}^{n}...(f_{nop}^{2}(f_{nop}^{1}(F_{sh}))))) + F_{sh}, \\ F_{DA} = & f_{nop}^{x}(F_{sh}) = f_{tri}^{n}f_{rect}^{n}...(f_{tri}^{1}(f_{rect}^{1}(F_{sh})))), \\ F_{int} = & f_{MSA}^{rect}(f_{LN}^{1}(F_{in})) + \alpha f_{CA}(f_{LN}^{1}(F_{in})) + F_{in}, \\ F_{out} = & f_{MLP}(f_{LN}^{2}(F_{int})) + F_{int}, \\ F_{int} = & f_{MSA}^{tri}(f_{LN}^{1}(F_{in})) + \beta f_{CA}(f_{LN}^{1}(F_{in})) + F_{in}, \\ F_{out} = & f_{MLP}(f_{LN}^{2}(F_{int})) + \beta f_{CA}(f_{LN}^{1}(F_{in})) + F_{in}, \\ F_{out} = & f_{MLP}(f_{LN}^{2}(F_{int})) + F_{int}. \end{split}$$

<sup>2</sup> Overlaping Cross Fusion Attention Block [OCFAB]:

$$R_0=(1+k)R.$$

3 Computational Complexity for Triangular-MSA:

$$O(MSA) = 4[HW]C^{2} + 2[HW]^{2}C,$$
  

$$O(D-MSA) = (4HWC^{2} + 2HWL^{2}C),$$
  

$$O(S-MSA) = (4HWC^{2} + 2(\frac{HW}{S})^{2}C).$$

CVPR\_2024 Presentation by Abhisek Ray

(2)

(3)

(1)



#### ① Environment Settings:

- GPU: NVIDIA GTX 1080 ti, CUDA 10.1.243, CuDNN 8.1.0,
- **2** Language: Python 3.10.11.
- Section 2.0.1 Framework: PyTorch 2.0.1
- Library: Torch, Numpy...

#### ② Training Settings:

- Iterations: 250K
- Batch Size: 32
- **Obejective Function**: L<sub>1</sub> Loss
- **Optimizer:** Adam.
- **Leaning Rate:** 0.0002
- **Ir Decay:** 0.5
- Step Size: [112.5K, 175K, 200K, 225K]

# **Ablation Study**





Figure 5: Iterative performance (PSNR in dB) comparison of the proposed CFAT for Top-Left: triangular vs rectangular vs overlapping attention, Top-Middle: sparse vs dense attention, Top-Right: various interval size, Bottom-Left: small vs medium vs large CFAT model, Bottom-Middle: various combinations of rectangular (8 × 8, 12 × 12, 16 × 16) with triangular (8 × 8, 16 \* 16) windows, and Bottom-Right: various channel lengths. [BSD100(×4) epoch 70]





| Method        | Scale      | Training Dataset | Set5  |        | Set14 |        | BSD100 |        | Urban100 |        | Manga109 |        |
|---------------|------------|------------------|-------|--------|-------|--------|--------|--------|----------|--------|----------|--------|
|               |            |                  | PSNR  | SSIM   | PSNR  | SSIM   | PSNR   | SSIM   | PSNR     | SSIM   | PSNR     | SSIM   |
| EDSR [1]      | ×2         | DIV2K            | 38.11 | 0.9602 | 33.92 | 0.9195 | 32.32  | 0.9013 | 32.93    | 0.9351 | 39.10    | 0.9773 |
| HAN [2]       |            | DIV2K            | 38.27 |        |       |        | 32.41  | 0.9027 | 33.35    |        | 39.46    |        |
| SAN [3]       |            | DIV2K            | 38.31 |        | 34.07 |        | 32.42  | 0.9028 | 33.10    |        | 39.32    |        |
| IPT [4]       |            | ImageNet         | 38.37 |        | 34.43 |        | 32.48  |        | 33.76    |        |          |        |
| SwinIR [5]    |            | DIV2K+Flickr2K   | 38.46 |        | 34.61 |        | 32.55  | 0.9043 | 33.95    |        | 40.02    |        |
| Swin2SR [6]   |            |                  |       |        |       |        |        |        |          |        |          |        |
| ACT [7]       |            |                  |       |        |       |        |        |        |          |        |          |        |
| ART 👸         |            |                  |       |        |       |        |        |        |          |        |          |        |
| EDT 🥑         |            |                  |       |        |       |        |        |        |          |        |          |        |
| HAT [10]      |            |                  |       |        |       |        |        |        |          |        |          |        |
|               |            |                  |       |        |       |        |        | 0.9044 |          | 0.9453 |          |        |
| CFAT (ours)   |            | DIV2K+Flickr2K   |       |        |       |        |        |        |          |        | 41.00    |        |
| EDSR [1]      | ×3         | DIV2K            | 34.65 | 0.9280 | 30.52 | 0.8462 | 29.25  | 0.8093 | 28.80    | 0.8653 | 34.17    | 0.947  |
| HAN [2]       |            |                  | 34.75 |        |       |        | 29.32  |        | 29.10    |        | 34.48    |        |
| SAN 131       |            |                  | 34.75 |        |       |        | 29.33  |        |          |        | 34.30    |        |
| IPT 🖬 🗖 – – – |            | ImageNet         | 34.81 |        | 30.85 |        | 29.38  |        | 29.49    |        |          |        |
| SwinIR [5]    |            | DIV2K+Flickr2K   |       |        | 31.00 |        | 29.49  |        |          |        | 35.28    |        |
| ACT [7]       |            | DIV2K+Flickr2K   |       |        | 31.17 |        |        |        | 30.26    |        | 35.47    |        |
| ART ISI       |            | DIV2K+Flickr2K   |       |        | 31.02 |        |        |        | 30.10    |        | 35.39    |        |
| EDT İği       |            | DIV2K+Flickr2K   |       |        |       |        |        |        |          |        | 35.47    |        |
| HAT [10]      |            |                  |       |        |       |        |        |        |          |        |          |        |
| CFAT-s (ours) |            | DIV2K+Flickr2K   |       |        | 31.06 |        |        |        | 30.18    |        | 35.48    |        |
| CFAT (ours)   |            | DIV2K+Flickr2K   | 35.31 | 0.9340 | 31.32 | 0.8569 | 29.70  | 0.8180 | 30.43    | 0.8928 | 35.82    | 0.9574 |
| EDSR [1]      | $\times 4$ | DIV2K            | 32.46 | 0.8968 | 28.80 | 0.7876 | 27.71  | 0.7420 | 26.64    | 0.8033 | 31.02    | 0.914  |
| HAN 2         |            |                  |       |        |       |        |        |        |          |        |          |        |
| SAN 🛐         |            |                  |       |        |       |        |        |        |          |        |          |        |
| iPT 🖬 🗖 – – – |            | ImageNet         | 32.64 |        | 29.01 |        | 27.82  |        | 27.26    |        |          |        |
| SwinIR [5]    |            | DIV2K+Flickr2K   |       |        | 29.15 |        | 27.95  |        | 27.56    |        | 32.22    |        |
| Swin2SR [6]   |            | DIV2K+Flickr2K   |       |        |       |        | 27.92  |        |          |        | 31.03    |        |
| ACT [7]       |            |                  |       |        |       |        |        |        |          |        |          |        |
| ART 👸         |            |                  |       |        |       |        |        |        |          |        |          |        |
| EDT 19        |            | DIV2K+Flickr2K   |       |        | 29.23 |        | 27.99  |        |          |        | 32.39    |        |
| HAT [10]      |            |                  |       |        |       |        |        |        |          |        |          |        |
| CFAT-s (ours) |            | DIV2K+Flickr2K   |       |        | 29.25 |        | 27.99  |        | 27.86    |        |          |        |
| CEAT (ours)   |            | DIV2K+Flickr2K   |       |        |       |        |        | 0.7524 |          |        |          |        |





Figure 6: Visual Comparison of CFAT with other state-of-the-art methods.

# Local Attribute Map & Diffusion Index





Figure 7: LAM results and corresponding Diffusion Index for CFAT and various SOTA methods.



Table 2: Analysis of CFAT based on channel counts.

| Channels<br>192 | Params (M)<br>25.01 | Multi-Adds (G)<br>102.6 | PSNR/SSIM<br>28.18dB/0.7524 |
|-----------------|---------------------|-------------------------|-----------------------------|
| 180             | 22.07               | 90.59                   | 28.17dB/0.7524              |
| 144             | 14.35               | 59.22                   | 27.99dB/0.7504              |
| 96              | 6.74                | 28.18                   | 27.78dB/0.7469              |

Table 3: Analysis of CFAT based on model size.

| Models | Params (M) | Multi-Adds (G) | PSNR/SSIM      |
|--------|------------|----------------|----------------|
| CFAT-I | 34.89      | 142.08         | 28.25dB/0.7531 |
| CFAT   | 22.07      | 90.59          | 28.17dB/0.7524 |
| CFAT-s | 14.35      | 59.22          | 27.99dB/0.7504 |
| CFAT-r | 13.52      | 56.27          | 27.93dB/0.7498 |

# Model Variants & Complexity





Figure 8: Performance vs Complexity plot of CFAT compare to other state-of-the-art models. **Performance:** PSNR (on X-axis) in dB. **Complexity:** Flops (on Y-axis) in G and Parameters (area of the circle) in M



#### Conclusion

- ✓ We propose a triangular window attention technique that smoothly integrates with rectangular windows to eliminate boundary-level distortion and allows additional non-identical shifting modes for activating more input pixels that participated in the computer vision task.
- By incorporating the novel triangular window attention in dense, sparse, and shifted configuration, CFAT outperforms the other state-of-the-art models qualitatively and quantitatively.

#### Future Scope

- Designing lightweight models for SISR using triangular window attention.
- Exploring the model for other computer vision tasks.

#### References



- B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, "Enhanced deep residual networks for single image super-resolution," in *Computer Vision and Pattern Recognition workshops* (CVPR-W), pp. 136–144, IEEE/CVF, 2017.
- [2] B. Niu, W. Wen, W. Ren, X. Zhang, L. Yang, S. Wang, K. Zhang, X. Cao, and H. Shen, "Single image super-resolution via a holistic attention network," in *European Conference on Computer Vision (ECCV)*, pp. 191–207, Springer, 2020.
- [3] T. Dai, J. Cai, Y. Zhang, S.-T. Xia, and L. Zhang, "Second-order attention network for single image super-resolution," in *Computer Vision and Pattern Recognition (CVPR)*, pp. 11065–11074, IEEE/CVF, 2019.
- [4] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao, "Pre-trained image processing transformer," in *Computer Vision and Pattern Recognition* (*CVPR*), pp. 12299–12310, IEEE/CVF, 2021.
- [5] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, "Swinir: Image restoration using swin transformer," in *International Conference on Computer Vision(ICCV)*, pp. 1833–1844, IEEE/CVF, 2021.
- [6] M. V. Conde, U.-J. Choi, M. Burchi, and R. Timofte, "Swin2sr: Swinv2 transformer for compressed image super-resolution and restoration," arXiv preprint arXiv:2209.11345, 2022.



- [7] J. Yoo, T. Kim, S. Lee, S. H. Kim, H. Lee, and T. H. Kim, "Enriched cnn-transformer feature aggregation networks for super-resolution," in *Winter Conference on Applications of Computer Vision (WACV)*, pp. 4956–4965, IEEE/CVF, 2023.
- [8] J. Zhang, Y. Zhang, J. Gu, Y. Zhang, L. Kong, and X. Yuan, "Accurate image restoration with attention retractable transformer," *arXiv preprint arXiv:2210.01427*, 2022.
- [9] W. Li, X. Lu, J. Lu, X. Zhang, and J. Jia, "On efficient transformer and image pre-training for low-level vision," *arXiv preprint arXiv:2112.10175*, 2021.
- [10] X. Chen, X. Wang, J. Zhou, and C. Dong, "Activating more pixels in image super-resolution transformer. arxiv 2022," arXiv preprint arXiv:2205.04437, vol. 1, 2022.



# Thank You

