Hyperbolic Learning with Synthetic Captions for Open-World Detection

Fanjie Kong¹, Yanbei Chen², Jiarui Cai², Davide Modolo²

¹Duke University, ²AWS AI Labs

Goal: localize seen or unseen objects with pre-defined object vocabulary or contextual freeform text queries.

Free-form text annotations from Visual Genome (Krishna et al., 2016) and RefCOCO (Yu et al., 2016).

Challenges:

- > High cost of manual annotations and human-crafted data acquisition pipeline.
- Localize objects described by both class labels and free-form texts

Previous work:

- Combine grounding data: GLIP (Li et al., 2021), GLIPv2 (Zhang et al., 2022)
- Innovate model design Grounding DINO (Liu et al., 2023)

Previous work:

- Combine grounding data: GLIP (Li et al., 2021), GLIPv2 (Zhang et al., 2022)
- Innovate model design Grounding DINO (Liu et al., 2023)

Our contribution:

- Leverage synthetic captions generated by VLMs to provide rich descriptions across different image regions;
- Introduce a novel hyperbolic vision-language learning method that aligns visual features with textual embeddings in a hierarchical structure.
- Achieve the state-of-the-art performance on a variety of detection and localization datasets in the open-world setting,

Our approach - Hyperlearner

Our hyperbolic vision-language learning approach exploits rich semantics from synthetic captions to boost openworld generalization.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

aws

Hyperbolic learning loss

Motivation: to mitigate the noise caused by hallucination in synthetic captions, we propose to impose a hierarchical relationship between visual and caption embeddings, where the caption and object adhere to a "caption entails object" hierarchy.

Hyperbolic learning loss

Hyperbolic contrastive loss:

$$\begin{split} \exp m_{\mathbf{0}}(x) &= \frac{\sinh(\sqrt{C}\|x\|)}{\sqrt{C}\|x\|},\\ \mathcal{L}_{cap}^{\mathcal{H}} &= -\log \frac{\exp(-d_{\mathcal{H}}(v_{i}^{\mathcal{H}}, c_{i}^{\mathcal{H}})/\tau)}{\sum_{j=1}^{B}\exp(-d_{\mathcal{H}}(v_{i}^{\mathcal{H}}, c_{j}^{\mathcal{H}})/\tau)}, \end{split}$$

Hyperbolic entailment loss:

$$E(c_i^{\mathcal{H}}, v_i^{\mathcal{H}}) = \max(0, \angle (c_i^{\mathcal{H}}, v_i^{\mathcal{H}}) - A(c_i^{\mathcal{H}})),$$

 $\mathcal{L}_{\text{entail}} = E(c_i^{\mathcal{H}}, v_i^{\mathcal{H}}) + \sum_{j \neq i} \max(0, \gamma - E(c_i^{\mathcal{H}}, v_j^{\mathcal{H}})),$

Visualization of caption-object hierarchy

Evaluation

Tasks:

- open-world object detection
 - Datasets: COCO, LVIS, ODinW
- free-form text localization
 - RefCOCO/+/g
- Metric
 - mAP (Mean Average Precision) for detection tasks
 - Top-1 accuracy for referential expression localization tasks.

Evaluation – open-world object detection

	Method	Backbone	#Params	FLOPs	Pre-training Data	COCO Zero-shot	2017 val Fine-tuning
1	Faster-RCNN [14]	RN50-FPN	42M	180G	COCO	-	40.2
2	Faster-RCNN [14]	RN101-FPN	54M	313G	COCO	-	42.0
3	Deformable DETR(DC5) [64]	RN50	41M	187G	COCO	-	41.1
4	CenterNetv2 [62]	RN50	76M	288G	COCO	-	42.9
5	Dyhead-T [6]	Swin-T	232M	361G	O365	43.6	53.3
6	GLIP-T(A) [28]	Swin-T	232M	488G	O365	42.9	52.9
7	GLIP-T(B) [28]	Swin-T	232M	488G	O365	44.9	53.8
8	GLIP-T(C) [28]	Swin-T	232M	488G	O365, GoldG	46.7	55.1
9	DINO-T [58]	Swin-T	-	-	O365	46.2	56.9
10	Grounding-DINO-T ¹ [32]	Swin-T	172M	464G	O365	46.7	56.9
11	Grounding-DINO-T ² [32]	Swin-T	172M	464G	O365, GoldG	48.1	57.1
12	Grounding-DINO-T ³ [32]	Swin-T	172M	464G	O365, GoldG, Cap4M	48.4	57.2
13	HyperLearner (Ours)	Swin-T	90M	324G	O365	47.6	56.8
14	HyperLearner (Ours)	Swin-T	90M	324G	O365, GoldG	48.4	57.4

Table 1. Comparison on COCO benchmark. Results are given on both zero-shot and fine-tuning settings. Metric: mAP.

Evaluation – open-world object detection

Pre-training Data	LVIS minival AP APr APc APf			
GoldG, RefCOCO	24.2	20.9 24.9 24.3		
O365	28.8	26.0 28.0 30.0		
O365, GoldG	24.9	17.7 19.5 31.0		
O365, GoldG, Cap4M	26.0	20.8 21.4 31.0		
O365, GoldG	25.6	14.4 19.6 32.2		
O365, GoldG, Cap4M	27.4	20.8 21.4 31.0		
O365	25.5	25.9 27.5 23.7		
O365, GoldG	31.3	30.7 32.6 30.3		
	Pre-training Data GoldG, RefCOCO O365 O365, GoldG O365, GoldG, Cap4M O365, GoldG, Cap4M O365, GoldG, Cap4M O365 O365, GoldG	Pre-training Data AP GoldG, RefCOCO 24.2 O365 28.8 O365, GoldG 24.9 O365, GoldG, Cap4M 26.0 O365, GoldG, Cap4M 25.6 O365, GoldG, Cap4M 27.4 O365, GoldG, Cap4M 27.4 O365, GoldG, Cap4M 25.5 O365, GoldG 25.5 O365, GoldG 31.3		

Table 2. Comparison on LVIS benchmark. Metric: mAP.

Method	Backbone	Pre-training Data	$\begin{array}{c c} \text{Test } AP_{avg} \\ \text{zero-shot} & \text{full-shot} \end{array}$		
Detic-R [61]	RN50	LVIS, COCO, IN-21K	29.4	64.4	
Detic-B [61]	Swin-B	LVIS, COCO, IN-21K	38.7	70.1	
GLIP-T(A) [28] GLIP-T(B) [28] GLIP-T(C) [28] Grounding-DINO-T [32]	Swin-T Swin-T Swin-T Swin-T	O365 O365 O365, GoldG O365, GoldG,Cap4M	28.7 33.2 44.4 44.9	63.6 62.7 63.9	
HyperLearner (Ours)	Swin-T	O365	37.9	66.7	
HyperLearner (Ours)	Swin-T	O365, GoldG	45.2	68.9	

Table 4. Comparison on ODinW benchmark. Metric: mAP.

Evaluation – free-form text localization

	Method	Pre-training Data	Fine-tuning	RefCOCO		RefCOCO+			RefCOCOg		
	Wiethod			val	testA	testB	val	testA	testB	val	test
6	GLIP-T(B) [28]	O365,GoldG	×	49.96	54.69	43.06	49.01	53.44	43.42	65.58	66.08
7	GLIP-T(C) [28]	O365,GoldG,Cap4M	×	50.42	54.30	43.83	49.50	52.78	44.59	66.09	66.89
8	Grounding-DINO-T [32]	O365,GoldG	×	50.41	57.24	43.21	51.40	57.59	45.81	67.46	67.13
9	Grounding-DINO-T [32]	O365,GoldG,RefC	×	73.98	74.88	59.29	66.81	69.91	56.09	71.06	72.07
10	Grounding-DINO-T [32]	O365,GoldG,RefC	\checkmark	89.19	91.86	85.99	81.09	87.40	74.71	84.15	84.94
11	HyperLearner (Ours)	O365,GoldG	×	50.66	60.87	44.66	59.29	62.29	45.43	67.02	67.44
12	HyperLearner (Ours)	O365,GoldG,RefC	×	77.89	76.92	72.99	67.54	75.55	57.54	77.00	76.79
13	HyperLearner (Ours)	O365,GoldG,RefC	\checkmark	90.74	92.09	85.46	82.35	84.70	72.64	82.53	82.39

 Table 3. Comparison on RefCOCO/+/g benchmark.
 Metric: Top-1 accuracy.

Visualization

110

aws

Summary

- We introduce a novel hyperbolic vision-language learning approach that effectively utilizes synthetic captions to enhance open-world object detection.
- Our comprehensive experiments demonstrate competitive performance across multiple benchmark datasets, supported by insightful ablation studies and qualitative analysis.
- This work establishes a foundational framework for extending hyperbolic learning to other vision learning tasks using synthetic data.

HYPERBOLIC LEARNING WITH SYNTHETIC CAPTIONS FOR OPEN-WORLD DETECTION

Thank you!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.