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1 Background

Task: Image-goal visual navigation

Target-driven visual navigation in indoor scenes using deep reinforcement learning, ICRA 2017

Task requirements: The agent navigates

to the goal area specified by an image

with the fewest number of steps

Navigation Example

Target image

Current observation



2 Related Works

 Existing method 2：VGM

Memory implementation：Employ topology maps to selectively store 

landmark features

Drawbacks: (1) Too many redundant nodes→ too much noise

(2) Lack of scene-level features → Inferior decision-making

Basic approach: 

• Build scene memory for navigation decision-making

• Use IL or RL to train agents

Scene Memory Transformer for Embodied Agents in Long-Horizon Tasks, CVPR2019

Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV2021

 Existing method 1：SMT

Memory implementation: stacking navigation history 

information

Drawback: The storage and computational complexity are 

high



2 Related Works

Common shortcomings of existing methods

Typically test only on single-goal datasets → The role 

of memory mechanisms is hard to be adequately 

evaluated

Scene Memory Transformer for Embodied Agents in Long-Horizon Tasks, CVPR2019

Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV2021

Our opinion: Multi-goal navigation tasks are

more suitable, as scene memory should help

the agent quickly return to the explored area

Examples of multi-goal navigation tasks



3 MemoNav: Agent Design

Working Memory in the Service of Executive Control Functions, Front Syst Neurosci, 2015

MemoNav: A navigation agent that mimics the working 

memory of the human brain

We introduce 3 types of scene memories:

1. Short-term memory (STM): Local nodes in a topology 

map

2. Long-term memory (LTM): A global map node

3. Working memory (WM): STM retained by our proposed 

forgetting module and LTM

MemoNav architecture“Working memory is essential for the organization of goal-

directed behavior, as it maintains task-relevant information.”

——Farshad A. Mansouri et al.



3 MemoNav: Agent Design

Adaptive Forgetting Module

① Decode the topological map while assigning each short-term 

memory attention score 𝛼 ௧సభ
ே

③ Temporarily remove (forget) the bottom 20% of the short-term

memory

④ Before the next navigation goal, the forgotten memories are

restored to the topological map

Effect

• Retain goal-relevant information and 

exclude noise from irrelevant areas

• Reduce computation

Visualization of attention scores for STM (map nodes)



3 MemoNav: Agent Design

Long-term memory (LTM) generation

① On top of the topology map, we add a global 

node as the LTM

② Graph convolution is used to aggregate STM 

features into LTM

LTM

The LTM connects and aggregates all node features

Effect

• Store scene-level features

• Facilitate feature fusion among 

long-distance graph nodes

• Assist in the forgetting module



3 MemoNav: Agent Design

Generate WM for decision-making

① The retained STM and LTM are further encoded into 

working memory (WM) by the graph attention mechanism

② WM is input to the policy module → Navigation actions

Retained STM + LTM GATv2
Encoding

Decoding

Policy
Network

Navigation 
actions

Decision-making

Effect

① Both local and global information is 

used for decision-making

② Use the information that is most 

beneficial to the goals

Working 
memory



3 MemoNav: Experiments

Quantitative comparison on multi-goal navigation tasks

Analysis: 

① The SR of MemoNav on multi-goal 

tasks outperforms the others significantly.

② MemoNav achieves leading 

performances consistently on two popular 

scene datasets

(SR/PR: Success Rate, SPL/PPL: Path length-weighted success rate）



3 MemoNav: Experiments

Ablation Study of the proposed working memory model

Analysis: 

① Applied independently, the forgetting module and LTM both improves performance. 

The combination of the two brings larger gains

② The synergy among the three components leads to the best performance

(SR/PR: Success Rate, SPL/PPL: Path length-weighted success rate）

LTM

STM



3 MemoNav: Experiments

Ablation study of forgetting threshold 

Analysis: 

① MemoNav performs the best on easier tasks with a lower 𝑝 but a higher 𝑝 is more 

beneficial for harder tasks.

② MemoNav maintains high SR while forgetting 40% of STM on the 4-goal tasks.



3 MemoNav: Experiments

Qualitative comparison

Analysis: Our MemoNav explores the 

scenes more efficiently, plans faster

paths, and owns greater ability to get 

rid of deadlocks.



3 MemoNav: Experiments

Qualitative comparison: visualization of multi-goal trajectories

Our MemoNav (Faster) Baseline method (VGM)

V.S.

Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV2021

Goals

Time Trajectory



3 MemoNav: Experiments

V.S.

Visual Graph Memory With Unsupervised Representation for Visual Navigation, ICCV2021

Qualitative comparison: visualization of multi-goal trajectories

Our MemoNav (Faster) Baseline method (VGM)

Goals

Time Trajectory



Thanks for 

watching!


