FedSOL: Stabilized Orthogonal Learning with Proximal Restrictions in Federated Learning

Gihun Lee, Minchan Jeong, Sangmook Kim, Jaehoon Oh, and Se-Young Yun

1 Background

Federated Learning (FL) is a **Distributed Learning** paradigm in which multiple clients collaboratively learn a machine learning model while preserving their **Data Privacy**.

1 Background

1 Background

CVPR 2024 – Paper 1898 (FedSOL)

1 Background

CVPR 2024 - Paper 1898 (FedSOL)

1 Background

CVPR 2024 - Paper 1898 (FedSOL)

When client data is **heterogeneous**, FL suffers from "*Client Drift*".

 \rightarrow How to accumulate knowledge from heterogeneous clients in a single <u>Global Model</u>?

Tan, Alysa Ziying, et al. "Towards personalized federated learning." IEEE Transactions on Neural Networks and Learning Systems (2022).

CVPR 2024 – Paper 1898 (FedSOL)

1-2. Data Heterogeneity

- Sharding: Uniform Size, Different Distributions (Higher Heterogeneity at lower s)
- Latent Dirichlet Allocation (LDA): Varying Size & Distributions (Higher Heterogeneity at lower α)

Figure 2. CIFAR-10 partition examples across 10 clients.

Background

Typical Local Objective:

$$\mathcal{L}^{k}(\boldsymbol{w}_{k}) = \frac{\mathcal{L}^{k}_{\text{local}}(\boldsymbol{w}_{k})}{\underset{\text{(e.g., CE Loss)}}{\text{Proximal Objective}}} + \beta \cdot \frac{\mathcal{L}^{k}_{p}(\boldsymbol{w}_{k}; \boldsymbol{w}_{g})}{\underset{\text{(e.g., FedProx, SCAFFOLD, FedKD...)}}{\text{Proximal Objective}}}$$

However, those two losses **conflicts** each other.

Motiv

Examples of **Proximal Objectives**:

FedGKT (NeurIPS 2020)	$\mathcal{L}_{c} = \mathcal{L}_{CE} + \frac{D_{KL}(p_{s} p_{k})}{D_{KL}(p_{s} p_{k})}$		$lacksquare$ x_1^\star	local gradient
FedProx (ICML 2019)	$F_k(w) + \frac{\mu}{2} w - w^t ^2$			[↑] correction
SCAFFOLD (ICML 2020)	$y_i \leftarrow y_i - \frac{\eta_l(g_i(y_i) + c - c_i)}{\eta_l(g_i(y_i) + c - c_i)}$		$\square x^{\star}$	↑ client update
FedDyn (ICLR 2021)	$\mathcal{L}_{k}(\theta) - \left\langle \nabla \mathcal{L}_{k}(\theta_{k}^{t-1}), \theta \right\rangle + \frac{\alpha}{2} \ \theta - \theta\ _{k}^{2} + \frac{\alpha}{2} \ \theta - \theta\ _{k}$	$-\theta^{t-1}\ ^2$		
MOON (CVPR 2021)	$\ell_{sup}\left(w_{i}^{t};(x,y)\right) + \mu\ell_{con}\left(w_{i}^{t};w_{i}^{t}\right)$	$^{-1}; w_t; x)$		
$\mathcal{L}^k(oldsymbol{w}_k)$ =	$= \mathcal{L}_{\text{local}}^k(\boldsymbol{w}_k) + \beta$	$\mathcal{L}_p^k(oldsymbol{w}_k;oldsymbol{w}_g)$		
	Original Objective	Proximal Objective		10
	CVPR 2024 – Paper 1898 (F	edSOL)		ĨŬ

FL must navigate the **balance between those two conflicting objectives**.

"How should the local learning **acquire local knowledge** while *minimizing its conflicts* with **global knowledge**?"

Orthogonal Learning in CL

Find update direction that is orthogonal to the previous task.

Challenges to implement to FL

- Cannot retain past data or gradients for reference for global knowledge.
- The global distribution overlaps with individual local distributions.

Proximal Gradient Projection

$$\boldsymbol{g}_{u}^{\mathrm{Proj}} = \boldsymbol{g}_{l} - \frac{\boldsymbol{g}_{l}^{T} \boldsymbol{g}_{p}}{\boldsymbol{g}_{p}^{T} \boldsymbol{g}_{p}} \boldsymbol{g}_{p} \quad \text{if} \quad \boldsymbol{g}_{l}^{T} \boldsymbol{g}_{p} < 0$$

 g_l : Gradient on **Original Local Loss**

 g_p : Gradient on Proximal Loss

 g_u : Gradient for Parameter Update

Experiment: CIFAR-10 (α = 0.1)

Drovimal Loss	Usage				
	Base	Projection			
None (FedAvg)	5	$6.13_{\pm 0.78}$			
L2 Distance	59.80 ±1.12	56.35 _{±2.85} (- 3.45)			
KL-Divergence	$\textbf{60.31}_{\pm 2.07}$	50.88 _{±3.55} (- 9.43)			

Directly negating the **proximal gradient (***g_p***)** rather *undermines* the local learning.

Sharpness-Aware Minimization (SAM)

B FedSOL

[Main Idea]: Perturb using "Global Knowledge" & Update to acquire "Local Knowledge"

Step 1: Weight PerturbationAdversa $\epsilon_p^* = \operatorname{argmax}_{\|\epsilon\|_2 \leq \rho} \mathcal{L}_p^k(\boldsymbol{w}_k + \epsilon; \boldsymbol{w}_g) \approx \rho \frac{\boldsymbol{g}_p}{\|\boldsymbol{g}_p\|_2}$ AdversaPerturbation StrengthPerturbation Strength

Adversarial perturb using **Proximal Loss** L_p^k

Step 2: Parameter Update $\boldsymbol{w}_k \leftarrow \boldsymbol{w}_k - \gamma \cdot \nabla_{\boldsymbol{w}_k} \mathcal{L}^k_{\mathrm{local}}(\boldsymbol{w}_k + \boldsymbol{\epsilon}_p^*)$

Update the model with the **Original Local Loss** L_{local}^{k} .

3. Main Approach - Stabilized Orthogonal Learning

[Main Idea]: Regularize Local Loss Surface using "Global Perspective"

FedSOL

[Main Idea]: Identify the local gradient is minimally affected by proximal gradient finds the <u>orthogonal direction</u> of local knowledge acquisition.

FedSOL

3. Main Approach – Toy Example (2-dimensional)

Local Loss

$$\mathcal{L}_{local}(\boldsymbol{u}, \boldsymbol{v}) = \frac{1}{2}(u - u_l)^2 + \frac{\delta}{2}(v - v_l)$$

Proximal Loss

$$\mathcal{L}_{p}(\boldsymbol{u},\boldsymbol{v}) = \frac{\mu}{2}(u^{2} + v^{2})$$

- FedProx results in *skewed* update that influenced by local distribution.
- FedSOL *aligns* parallel to the local optima regardless of δ.

FedSOL

[Main Idea]: Perturbing only the last classifier layer is sufficient for FedSOL. The performance reaches as high as full-model perturbation.

Experiment: CIFAR-10 (α = 0.1)

Target Position	Perturbation (ρ)					
	0.0	0.5	1.0	1.5	2.0	FLOPS
All (full)		61.17	64.16	64.38	63.94	$2 \times + \delta$
Body (partial)	56.13	60.98	62.95	63.94	63.80	$1.96 \times +\delta$
Head (partial)		62.65	63.62	64.13	63.25	$1.33 \times +\delta$

- δ : Computation for the proximal loss.
- **FLOPs** shows relative computation w.r.t. **FedAvg.**

Experiment: Test Accuracy @1 (%). The values in () are the standard deviations.

Non-IID Partition Strategy : LDA									
Method	MNIST	CIFAR-10			SVUN	CINIC 10	DothMNIST	TicsuoMNIST	
		$\alpha = 0.05$	$\alpha = 0.1$	$\alpha = 0.3$	$\alpha = 0.5$	SVIIN			1155001111151
FedAvg [46]	96.11 _(0.19)	42.27(1.34)	56.13 _(0.78)	$67.32_{(0.94)}$	73.90(0.66)	55.36 _(4.85)	36.49 _(4.37)	$65.98_{(4.76)}$	$42.78_{(2.03)}$
FedProx [38]	$96.05_{(0.13)}\downarrow$	$50.58_{(0.57)}$ \uparrow	59.80 _(1.12)	$\uparrow 68.39_{(0.81)} \uparrow$	$72.87_{(0.55)}$	\uparrow 72.40 _(3.15) \uparrow	40.09(3.97) 1	$70.44_{(1.92)}$ \uparrow	$52.25_{(1.40)}$ \uparrow
FedNova [64]	88.24(1.37) ↓	$10.00_{(Failed)} \downarrow$	10.00(Failed)	↓ 64.67 _(0.77) ↓	$70.04_{(0.45)}$	↓ 53.07(3.30) ↓	21.89(1.71)	38.94(2.34)↓	15.03 _(3.74) ↓
Scaffold [28]	94.18 _(0.32) ↓	$10.00_{(Failed)} \downarrow$	$10.00_{(Failed)}$	↓ <u>71.92</u> (0.17) ↑	<u>75.49</u> (0.21)	$\uparrow 21.46_{(1.75)} \downarrow$. 16.89(2.25) ↓	. 18.07 _(0.04) ↓	32.04(0.07) ↓
FedNTD [33]	$96.97_{(0.27)}$ \uparrow	$58.08_{(0.48)}$ \uparrow	<u>63.16</u> (1.02)	$\uparrow 71.56_{(0.26)} \uparrow$	74.91 _(0.33)	$\uparrow 79.25_{(0.61)}$ 1	50.22 _(3.71) 1	$74.26_{(1.25)}$ \uparrow	$44.55_{(1.95)}$ \uparrow
FedSAM [55]	95.72 _(0.43) ↓	36.14(1.21) ↓	$52.14_{(0.94)}$	↓ 64.83(0.56) ↓	$70.74_{(0.40)}$	↓ 13.27(2.78) ↓	36.70(4.28)	$66.64_{(3.76)}$ \uparrow	$44.07_{(3.02)}$ \uparrow
FedASAM [6]	$96.60_{(0.10)}$ \uparrow	$43.12_{(1.25)}$ \uparrow	$57.00_{(0.30)}$	$\uparrow 67.45_{(0.92)}$ \uparrow	73.91 _(0.51)	$\uparrow 60.25_{(4.56)}$ 1	36.93 _(4.60) 1	$69.45_{(3.19)}$ \uparrow	$42.73_{(2.35)}$ \uparrow
FedSOL (Ours)	97.44 (0.11) ↑	<u>60.01</u> (0.30) ↑	<u>64.13</u> (0.46)	↑ <u>71.94</u> (0.57) ↑	<u>75.60</u> (0.32)	↑ <u>83.92</u> (0.29) ↑	55.07(1.48) ↑	• <u>78.88</u> (0.46) ↑	<u>53.40</u> (0.85) ↑

FedSOL achieves best results in most cases, showing its robustness against data heterogeneity.

4. Main Experiment – Analysis

FedSOL stabilizes federated learning in various perspectives.

CVPR 2024 – Paper 1898 (FedSOL)

Results

5. Conclusion

5 Takeaway

- FL must strike the balance between global knowledge preservation (Proximal Loss) and local knowledge acquisition (Original Local Loss).
- We suggest that orthogonal learning in CL could be an effective strategy in FL, by resolving conflicts of local knowledge on global knowledge.
- We propose FedSOL, which aims to obtain the local gradient which is orthogonal to the proximal gradient.
- FedSOL acquire local knowledge during local learning that less conflicts with the global knowledge.

Thank You!