

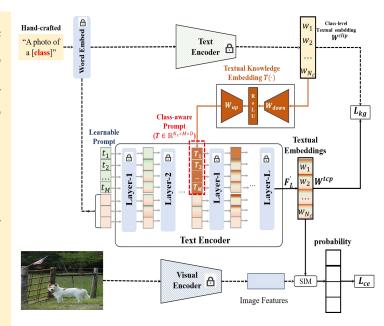
TCP: Textual-based Class-aware Prompt tuning for Visual-Language Model

Hantao Yao¹, Rui Zhang², Changsheng Xu ^{1,3}

1State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, CAS

2State Key Lab of Processors, Institute of Computing Technology, CAS;

3 University of Chinese Academy of Sciences(CAS),

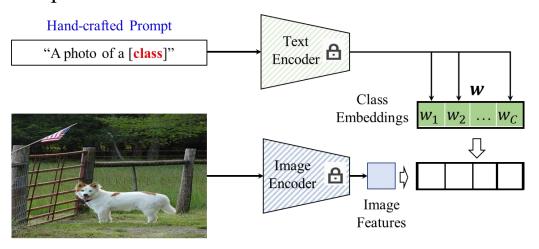

{hantao.yao,csxu}@nlpr.ia.ac.cn;zhangrui@ict.ac.cn

Summary

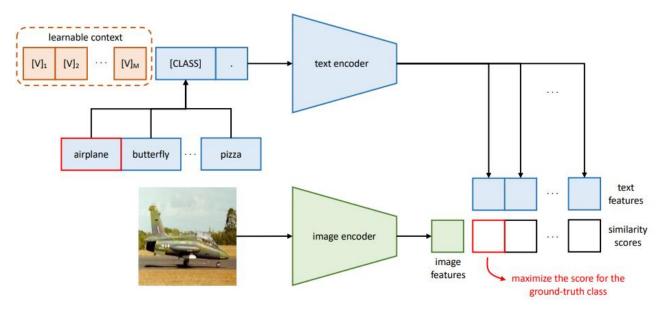
- **Prompt Tuning** has been proposed to adapt the pretrained VLM to downstream tasks, achieving a fantastic performance on various few-shot or zero-shot visual recognization task.
- Existing methods' shortcoming:
- **Domain-shared Prompt Tuning** are derived from labeled training image, their performance is suboptimal for unseen classes and images.
- Image-conditional prompt tuning has a limited ability to reduce the domain shifts at the class-level.
- Main insight: The textual embedding generated by the forzen CLIP contains the essential class-level knowledge, which can be injected into the learnable prompt for generating the class-aware prompt.

- Method: An Textual Knowledge Emebedding $\mathcal{T}(\cdot)$ is proposed to project the hand-craft textual-based class-level embedding W^{clip} in into the Class-aware Prompt $T \in \mathbb{R}^{N_c \times M \times D}$
- $\mathbf{T} = [\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_{M_l}]$ is inserted into \mathbf{F}_l for generating the enhanced tokens \mathbf{F}_l ,

$$\mathbf{F}_{l}^{'} = [\mathbf{T}_{1,}\mathbf{T}_{2,}\dots,\mathbf{T}_{M,}\mathbf{F}_{l,M+1,}\mathbf{F}_{l,M+1,}\dots,\mathbf{F}_{l,N_{t},}]$$


• **Generalization of** TKE: lower distance, higher performance.

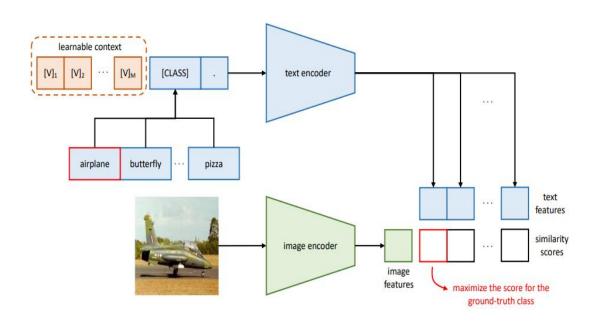
Methods	Base	New	Н
CoOp [50]	82.63	67.99	74.6
CoOp+TKE	83.10(↑ 0.47)	70.17(† 2.18)	76.09 († 1.49)
KgCoOp [43]	80.73	73.6	77.00
KgCoOp +TKE	84.13 († 3.40)	75.36(† 1.7 6)	79.51 († 2.51)
ProGrad [51]	82.48	70.75	76.16
ProGrad+TKE	82.61 (↑ 0.13)	72.91(† 2.16)	77.46 († 1.30)
PromptSRC [19]	82.07	74.83	78.03
PromptSRC+TKE	83.74 († 1.67)	75.85(† 1.02)	79.60 († 1 .5 7)
DAPT [5]	83.18	69.27	75.59
DAPT+TKE	84.15 (↑ 0.97)	74.87(↑ 5.60)	79.24 († 3.65)

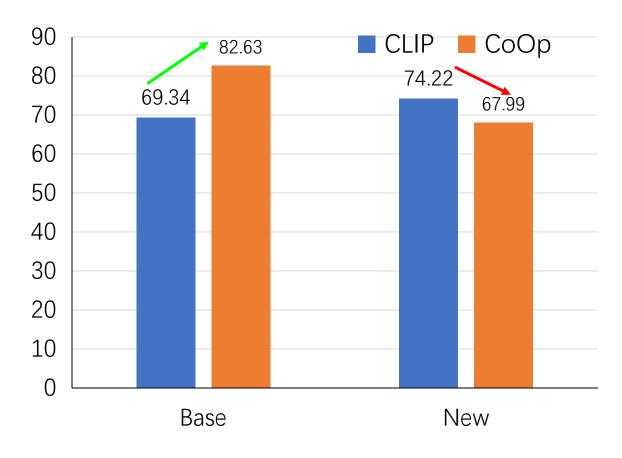

Prompt Tuning

■ **Prompt Tuning** has been proposed to adapt the pretrained VLM to downstream tasks, achieving a fantastic performance on various few-shot or zero-shot visual recognization task.

■ CLIP uses a **hand-crafted prompts** to model the textual-based class embedding for zero-shot prediction.

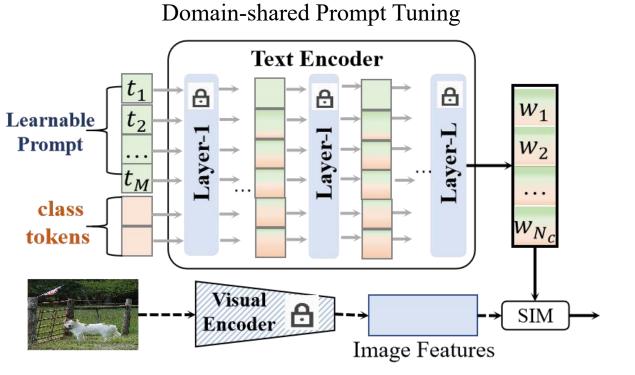
■ Context Optimization(CoOp) aims to model a prompt's context using a set of learnable vectors.

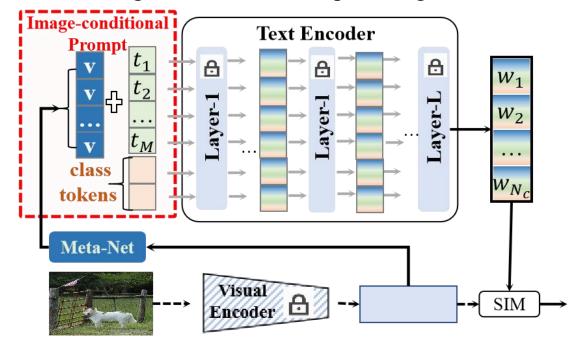



Overview of Context Optimization(CoOp)¹

1 Image comes from "Learning to Prompt for Vision-Language Models"

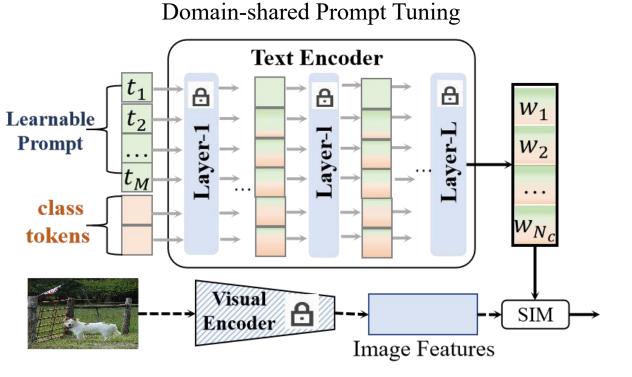
Context Optimization(CoOp)

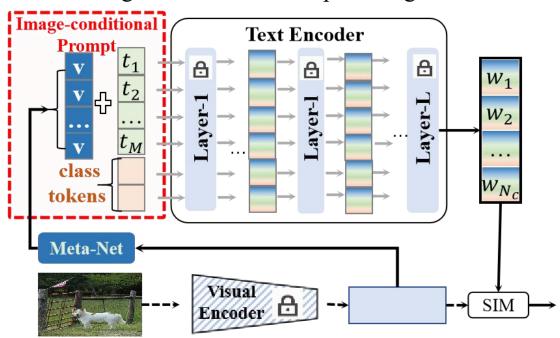

- Context Optimization(CoOp) aims to model a prompt's context using a set of learnable vectors.
- CoOp is overfitted on the trained seen domain(Base), leading a worse generalization on the unseen domain(New).



CoOp-based Methods

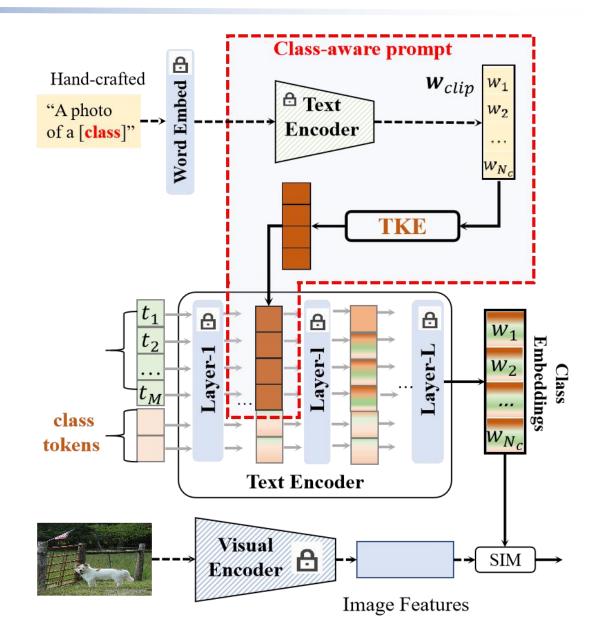
- **Existing methods can be divided into:**
 - Domain-shared prompt tuning: a unique learnable prompt for both seen and unseen domains
 - Image-Conditional prompt tuning: injecting the image's knowledge into each prompt.


Image-Conditional Prompt Tuning


CoOp-based Methods

Existing methods can be divided into:

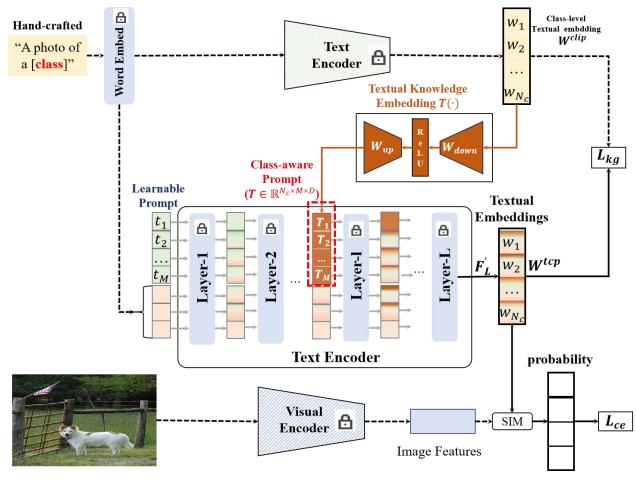
- Domain-shared prompt tuning: a unique learnable prompt for both seen and unseen domains
- Image-Conditional prompt tuning: injecting the image's knowledge into each prompt.


Image-Conditional Prompt Tuning

They all have a limted ability to boost class-level discriminative ability, especially for the unseen domain.

Main Insight

- The textual embedding generated by the forzen CLIP contains the essential class-level knowledge, which can be injected into the learnable prompt for generating the class-aware prompt.
 - Improving discriminative of the class-level textual classifier on the seen domain
 - Improving generalization on the unseen domain with considering the prior knowledge of unseen domain.


Textual-based Class-aware Prompt tuning

- Based on the standard KgCoOp method, an Textual Knowledge Emebedding $\mathcal{T}(\cdot)$ is proposed to project the hand-craft textual-based class-level embedding \mathbf{W}^{clip} in into the Class-aware Prompt $\mathbf{T} \in \mathbb{R}^{N_c \times M \times D}$
- Aftering obtaining the middle tokens \mathbf{F}_l of l-th encoder layer, the class-aware prompt $\mathbf{T} = [\mathbf{T}_1, \mathbf{T}_2, \dots, \mathbf{T}_{M,l}]$ is inserted into \mathbf{F}_l for generating the enhanced tokens \mathbf{F}_l ,

$$\mathbf{F}_{l}^{'} = [\mathbf{T}_{1}, \mathbf{T}_{2}, \dots, \mathbf{T}_{M}, \mathbf{F}_{l,M+1}, \mathbf{F}_{l,M+1}, \dots, \mathbf{F}_{l,N_{t}}]$$

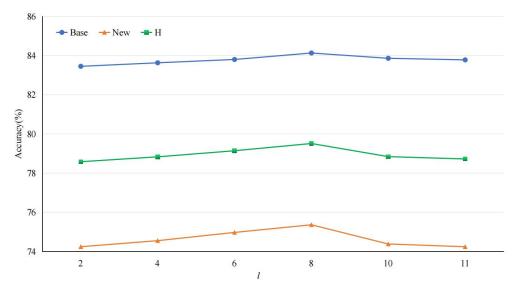
ullet \mathbf{F}_{l} is fed into the following layers for generating the textual embedding,

$$\mathbf{F}_{i}^{'} = \theta_{i}(\mathbf{F}_{i-1}^{'}), i \in [l+1, L]$$

• Generalization of TKE:

• Textual Knowledge Embedding(TKE) is a **plug-and-play module** that can quickly insert existing prompt tuning methods to improve their performance further.

Methods	Base	New	H
CoOp [50]	82.63	67.99	74.6
CoOp+TKE	83.10(↑ 0.47)	70.17(† 2.18)	76.09 († 1.49)
KgCoOp [43]	80.73	73.6	77.00
KgCoOp +TKE	84.13 (↑ 3.40)	75.36(† 1.76)	79.51 († 2.51)
ProGrad [51]	82.48	70.75	76.16
ProGrad+TKE	82.61 (↑ 0.13)	72.91(† 2.16)	77.46 († 1.30)
PromptSRC [19] PromptSRC+TKE	82.07	74.83	78.03
	83.74 († 1.67)	75.85(† 1.02)	79.60 († 1.57)
DAPT [5]	83.18	69.27	75.59
DAPT+TKE	84.15 (↑ 0.97)	74.87(† 5.60)	79.24 († <mark>3.65</mark>)


■ Effectiveness of templates:

Templates	Base	New	Н
'XXXX'	84.13	75.36	79.51
'a photo of a '	83.94	74.94	79.18
'this is a picture'	84.00	74.66	79.06

Domain-shared prompt vs Class-aware prompt:

Baseline	Domain-Shared	Class-Aware	Base	New	Н
√	\checkmark		80.73	73.6	77
V	•	\checkmark	84.05	75.18	79.36
V	\checkmark	\checkmark	84.13	75.36	79.51

• Effect of insert layer:

• Comparison with single-layer vs multiple layers prompt tuning:

Modes	Layers	Base	New	Н
TCP-Shallow	[{8}	84.13	75.36	79.51
TCP-Deeper	{4;8}	84.02	75.13	79.33
TCP-Deeper	{8;10}	84.24	75.29	79.51
TCP-Deeper	{4;8;10}	84.11	74.51	79.02
TCP-Deeper	{4;6;8;10}	84.17	74.66	79.13

■ Effectiveness of TCP: Base-to-new setting

Table 1. Comparison on the base-to-new generalization setting with 16-shot samples. 'tp', 'dtp', 'vp', and 'dvp' denote the 'textual prompt', 'deep textual prompt', 'visual prompt', and 'deep visual prompt', respectively. PromptSRC are based on deep visual-textual prompt tuning ('dvp+dtp'). '*' denote the performance obtained by our re-implementation.

Datasets	Sets	CoOp*	CoCoOp	DAPT*	ProGrad*	ProDA	KgCoOp	RPO	PLOT*	LFA	MaPLe	DePT	PromptSRC*	TCP
		(IJCV22)	(CVPR22)	(ICCV23)	(ICCV23)	(CVPR22)	(CVPR23)	(ICCV23) dtp+dvp	(ICLR23)	(ICCV23)	(CVPR23) dtp+dvp	(Arxiv23)	(ICCV23) dtp+dvp	tp
	Dana	82.38	80.47	tp+vp			80.73		83.98	83.62				84.13
Average	Base New	67.96	71.69	83.18 69.27	82.48 70.75	81.56 72.30	73.6	81.13 75.00	71.72	74.56	82.28 75.14	83.62 75.04	84.12 75.02	75.36
Average	H	74.48	75.83	75.59	76.16	76.65	77.0	77.78	77.37	78.83	78.55	79.10	79.31	79.51
			75.98	76.83	77.02	75.40	75.83		77.30	76.89		77.03	77.75	77.27
I	Base	76.46 66.31	70.43	69.27	66.66	70.23	69.96	76.60 71.57	69.87	69.36	76.66 70.54	70.13	70.70	69.87
ImageNet	New	71.02	73.10	72.85	71.46	72.72	72.78	74.00	73.40	72.93	73.47	73.42	74.06	73.38
	Н	97.80	97.96	97.83	98.02		97.72	97.97	98.53	98.41	97.74	98.30	98.13	98.2
Caltach 101	Base	The second second second				98.27						94.60		94.6
Caltech 101	New	93.27	93.81	93.07	93.89	93.23	94.39	94.37	92.80	93.93	94.36		93.90	
	Н	95.48	95.84	95.39	95.91	95.68	96.03	96.03	95.58	96.13	96.02	96.41	95.97	96.42
O 6 ID .	Base	94.47	95.20	95.00	95.07	95.43	94.65	94.63	94.50	95.13	95.43	94.33	95.50	94.6
OxfordPets	New	96.00	97.69	95.83	97.63	97.83	97.76	97.50	96.83	96.23	97.76	97.23	97.40	97.20
	Н	95.23	96.43	95.41	96.33	96.62	96.18	96.05	95.65	95.68	96.58	95.76	96.44	95.92
	Base	75.67	70.49	75.80	77.68	74.70	71.76	73.87	79.07	76.32	72.94	79.13	78.40	80.80
	New	67.53	73.59	63.93	68.63	71.20	75.04	75.53	74.80	74.88	74.00	75.47	74.73	74.13
	Н	71.37	72.01	69.36	72.88	72.91	73.36	74.69	76.88	75.59	73.47	77.26	75.52	77.3
Flowers	Base	97.27	94.87	96.97	95.54	97.70	95.00	94.13	97.93	97.34	95.92	98.00	97.90	97.7.
	New	67.13	71.75	60.90	71.87	68.68	74.73	76.67	73.53	75.44	72.46	76.37	76.77	75.5
	H	79.44	81.71	74.81	82.03	80.66	83.65	84.50	83.99	85.00	82.56	85.84	86.06	85.2
	Base	89.37	90.70	90.37	90.37	90.30	90.5	90.33	89.80	90.52	90.71	90.50	90.63	90.5
Food101	New	88.77	91.29	91.30	89.59	88.57	91.7	90.83	91.37	91.48	92.05	91.60	91.50	91.3
	Н	89.07	90.99	90.83	89.98	89.43	91.09	90.58	90.58	91.00	91.38	91.05	91.06	90.9
	Base	39.67	33.41	39.97	40.54	36.90	36.21	37.33	42.13	41.48	37.44	43.20	42.30	41.9
Aircraft	New	31.23	23.71	29.80	27.57	34.13	33.55	34.20	33.73	32.29	35.61	34.83	36.97	34.43
	H	34.95	27.74	34.14	32.82	35.46	34.83	35.70	37.46	36.31	36.50	38.57	39.46	37.8
	Base	80.85	79.74	80.97	81.26	78.67	80.29	80.60	82.20	82.13	80.82	82.33	82.83	82.63
SUN397	New	68.34	76.86	76.97	74.17	76.93	76.53	77.80	73.63	77.20	78.70	77.80	79.00	78.2
	H	74.07	78.27	78.92	77.55	77.79	78.36	79.18	77.68	79.59	79.75	80.00	80.87	80.3
	Base	79.97	77.01	82.23	77.35	80.67	77.55	76.70	81.97	81.29	80.36	82.20	82.60	82.7
DTD	New	48.60	56.00	54.23	52.35	56.48	54.99	62.13	43.80	60.63	59.18	59.13	57.50	58.0
	H	60.46	64.85	65.36	62.45	66.44	64.35	68.61	57.09	69.46	68.16	68.78	67.80	68.2
	Base	90.10	87.49	94.73	90.11	83.90	85.64	86.63	93.70	93.40	94.07	89.03	92.40	91.6
EuroSAT	New	53.00	60.04	50.33	60.89	66.00	64.34	68.97	62.67	71.24	73.23	71.07	68.43	74.7
	H	66.74	71.21	65.74	72.67	73.88	73.48	76.79	75.11	80.83	82.3	79.04	78.63	82.3
	Base	84.53	82.33	84.30	84.33	85.23	82.89	83.67	86.60	86.97	83.00	85.80	86.93	87.1
UCF101	New	67.37	73.45	76.33	74.94	71.97	76.67	75.43	75.90	77.48	78.66	77.23	78.33	80.7
	Н	74.98	77.67	80.12	79.35	78.04	79.65	79.34	80.90	81.95	80.77	81.29	82.41	83.8

■ Effectiveness of TCP: Cross-Dataset Generalization

Table 2. Comparison of cross-dataset evaluation. 'tp', 'dtp', 'vp', and 'dvp' denote the 'textual prompt', 'deep textual prompt', 'visual prompt', and 'deep visual prompt', respectively. Note that DAPT and MaPLe are based on visual-textual prompt tuning ('vp+tp').

Datasets	CLIP	CoOp	ProGrad	KgCoOp	DePT	VPT	PLOT	PromptSRC	MaPLe	DAPT	TCP
		tp	tp	tp	tp	tp+vp	tp+vp	dtp+tvp	dtp+dvp	tp+vp	tp
ImageNet	66.70	71.51	72.24	70.66	72.77	69.73	71.60	71.27	70.72	71.60	71.40
Caltech101	93.30	93.70	91.52	93.92	94.23	93.67	92.07	93.60	93.53	93.50	93.97
OxfordPets	89.10	89.14	89.64	89.83	90.03	89.27	90.10	90.25	90.49	90.67	91.25
StandfordCars	65.70	64.51	62.39	65.41	65.57	65.5	65.70	65.70	65.57	65.93	64.69
Flowers	70.70	68.71	67.87	70.01	70.57	70.2	69.23	70.25	72.20	71.70	71.21
Food101	85.90	85.30	85.40	86.36	86.37	86.27	86.23	86.15	86.20	86.10	86.69
FGVCAircraft	24.90	18.47	20.16	22.51	23.27	22.13	25.00	23.90	24.74	23.03	23.45
SUN397	62.60	64.15	62.47	66.16	66.67	66.57	61.67	67.10	67.01	67.00	67.15
DTD	44.30	41.92	39.42	46.35	45.97	46.93	38.60	46.87	46.49	44/00	44.35
EuroSAT	48.30	46.39	43.46	46.04	43.53	47.43	47.83	45.50	48.06	52.47	51.45
UCF101	67.60	66.55	64.29	68.50	69.30	67.20	67.00	68.75	68.69	68.73	68.73
Avg.	65.24	63.88	62.71	65.51	65.55	65.52	64.34	65.81	66.30	66.31	66.29

■ Effectiveness of TCP: Few-shot Learning(K=4)

Table 4. Comparison of few-shot learning with 4-shot samples.

	CLIP	CoOp	CoCoOp	ProGrad	KgCoOp	MaPLe	TIP-Adapter-F	DAPT	PromptSRC	PLOT	TaskRes	TCP
ImageNet	66.70	69.37	70.55	70.21	70.19	70.67	70.78	70.80	70.80	70.40	62.87	70.48
Caltech101	93.30	94.44	94.98	94.93	94.65	94.30	94.77	94.23	94.77	95.13	94.67	95.00
OxfordPets	89.10	91.30	93.01	93.21	93.20	92.05	92.26	92.17	93.23	92.55	92.00	91.90
StandfordCars	65.70	72.73	69.10	71.75	71.98	68.70	74.42	74.40	71.83	74.93	75.90	76.30
Flowers	70.70	91.14	82.56	89.98	90.69	80.80	92.98	92.37	91.31	92.93	91.50	94.40
Food101	85.90	82.58	86.64	85.77	86.59	86.90	86.18	83.60	86.06	86.46	86.03	85.3
FGVCAircraft	24.90	33.18	30.87	32.93	32.47	29.03	35.49	32.47	32.80	35.29	33.80	36.20
SUN397	62.60	70.13	70.50	71.17	71.79	71.47	70.65	72.20	72.80	70.42	72.70	72.11
DTD	44.30	58.57	54.79	57.72	58.31	54.73	61.70	61.37	60.64	62.43	59.57	63.97
EuroSAT	48.30	68.62	63.83	70.84	71.06	54.87	78.27	72.73	75.02	80.70	72.87	77.43
UCF101	67.60	77.41	74.99	77.82	78.40	73.70	79.73	79.40	79.35	79.76	76.10	80.83
Avg.	65.37	73.59	71.98	74.21	74.48	70.66	76.11	75.07	75.33	76.45	74.36	76.72

Conclusion

- An effectively Textual-based Class-aware Prompt tuning is proposed by injecting the textual class-aware prompts generated by Textual Knowledge Embedding(TKE) into the Text Encoder.
- We demonstrate that explicitly incorporating the prior knowledge of each class into the learnable prompt tokens can enhance the discriminative of the class distribution.
- https://github.com/htyao89 /Textual-based_Class-aware_prompt_tuning

Methods	Prompts		Training-time		
		Base	New	Н	
CLIP	Hand-crafted	69.34	74.22	71.70	-
СоОр	Textual	82.63	67.99	74.60	6ms/image
ProGrad	Textual	82.48	70.75	76.16	22ms/image
СоСоОр	Textual+visual	80.47	71.69	75.83	160ms/image

TCP: Textual-based Class-aware Prompt tuning for Visual-Language Model

Hantao Yao¹, Rui Zhang², Changsheng Xu ^{1,3}

1State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, CAS

2State Key Lab of Processors, Institute of Computing Technology, CAS;

3 University of Chinese Academy of Sciences(CAS),

{hantao.yao,csxu}@nlpr.ia.ac.cn;zhangrui@ict.ac.cn