PIN:
Positional Insert Unlocks Object
Localisation Abilities in VLMs



VLMs are great with many things, but not localisation

Prompt 1: Provide a bounding box around the cat
Prompt 2: Localise the cat in the image
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VLMs are great with many things, but not localisation
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Our approach

‘o

+

frozen VLM, e.g. Flamingo Positional Insert (PIN) module

Synthetic, unlabelled data

X
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Synthetic data generation

_>

Pasting |—> Pasting

Synthetic Data Generation (SDG)

Backgrod

- Self-Supervision Signal: Location is known via pasting
- Avoid collapse: Pasting multiple objects
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Example generated data

- Non-realism is not an issue, as vision encoder is kept completely frozen

Pasting objects from categories that do not overlap with test data
- Zero-shot evaluation

X
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Overview of VLMs

Vision
|Encoder
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Feed the frozen VLM synthetic data

Synthetic data generation
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Provide spatial learning capacity via PIN

[150, 10, 224, 120]
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Synthetic data generation
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In the image is a monkey located at

Trained weights
Frozen VLM

Sinusoidal embedding
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What is PIN? It's a PEFT method for VLMs
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Inference with PIN
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Results (zero-shot)
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Results PVOC (zero-shot)

aeroplane
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Predictions

Ground Truth




Few-shot learning doesn’t work

Method PVOC<3 objects COCO<3 ovjects
mloU mloU mloU;, | mloU mloU mloUj,
Baselines
raw 0 0 0 0 0 0
random 0.22+0.04 0.10+0.02 0.33+0.06 | 0.124+0.04 0.07+0.02 0.22+0.08
2 context 0.19+0.11  0.08+0.05 0.30+0.18 | 0.10+0.08 0.06+0.04 0.18+0.16
5 context 0.19+0.09 0.07+0.04 0.31+0.15 | 0.10+0.08 0.06+0.04 0.20+0.16
10 context 0.20+0.11  0.064+0.03 0.32+0.18 | 0.09+0.07 0.054+0.04 0.1740.14

OpenFlamingo [“]
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PIN enables localisation

Method PVOC <3 Objects COCO <3 Objects
mloU mloUj, mloU;, | mloU mloU mloU
Baselines
raw 0 0 0 0 0 0
random 0.22+0.04 0.10+0.02 0.33+0.06 | 0.12+0.04 0.07+0.02 0.2240.08
= 2context 0.19+0.11  0.08+0.05 0.30+0.18 | 0.10+0.08 0.06-£0.04 0.18+0.16
S 5 context 0.194+0.09 0.07+0.04 0.31+0.15 | 0.10+0.08 0.06+0.04 0.20+0.16
g 10 context 0.20+0.11  0.06+0.03 0.32+0.18 | 0.09+0.07 0.05+0.04 0.17+0.14
z
o
o
& PIN (ours) 0.45 0.27 0.62 0.35 0.26 0.59
S
=!
—
M

UNIVERSITY OF AM™ 19
X



PIN outperforms other PEFT methods
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Method PVOC§3 Objects COCOS 3 Objects
mloU mloUj, mloU;, | mloU mloU mloU
°
on
£
% Prompt-learning
g CoOp on ¢y 0.28 0.11 0.43 0.22 0.10 0.39
@) VPT on F 0.32 0.14 0.50 0.25 0.12 0.46
VPT on ¢y 0.42 0.21 0.61 0.33 0.22 0.57
LoRA on ¢y 0.44 0.26 0.62 0.33 0.23 0.58
& PIN (ours) 0.45 0.27 0.62 0.35 0.26 0.59
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PIN works on other VLMs too

Method PVOC<3 objects COCO<3 objects
mloU mloU mloU;, | mloU mloU,;  mloUy,
—'  Prompt-learning
~ VPT on F' 0.37 0.16 0.56 0.29 0.15 0.53
p_'.: VPT on ¢y 0.31 0.13 0.47 0.26 0.11 0.46
2 &PIN(ours) 044 0.24 0.63 0.34 0.22 0.60
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Wlth slight ,modlflcatlon can work on RefCOCO

C e ANMETEAT B

N “Oldlady in between

Left black shirt the players”

“Pizza right front piece
in middle”

|:| Predictions Ground Truth

“Top left apron strings” “Pizza squares left” “A man black” “A right person”




Thank you!



