

Introduction

Transformers have been successfully applied in video-based 3D human pose estimation (HPE). However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices.

How to achieve efficient VPTs?

- Large receptive field: Directly reducing the frame number can boost VPTs' efficiency, but it results in a small temporal receptive field that limits the model to capture richer spatio-temporal information to improve performance.
- Video Redundancy: Adjacent frames in a video sequence contain redundant information due to the similarity of nearby poses. Moreover, recent studies found that some tokens tend to be similar in the deep transformer blocks.
- Seq2seq Inference: For fast inference, A real-world 3D HPE system should be able to estimate the consecutive 3D poses of all frames at once in an input video.

Comparison with SOTA VPTs

Method	$\mid F$	Param	FLOPs	$MPJPE \downarrow$
PoseFormer (ICCV'21) [51]	81	9.60	1.63	44.3
Strided (TMM'22) [17]	351	4.35	1.60	43.7
P-STMO (ECCV'22) [34]	243	7.01	1.74	42.8
STCFormer (CVPR'23) [35]	243	18.93	156.22	40.5
MHFormer (CVPR'22) [18]	351	31.52	14.15	43.0
TPC w. MHFormer (Ours)	351	31.52	8.22 (↓ 41.91%)	43.0
MixSTE (CVPR'22) [48]	243	33.78	277.25	40.9
HoT w. MixSTE (Ours)	243	35.00	167.52 (↓ 39.6%)	41.0
TPC w. MixSTE (Ours)	243	33.78	251.29 (↓ 09.4%)	39.9
MotionBERT (ICCV'23) [52]	243	16.00	131.09	39.2
MotionBERT (ICCV'23) [52]*	243	16.00	131.09	39.8
HoT w. MotionBERT (Ours)	243	16.35	63.21 (↓ 51.8%)	39.8
TPC w. MotionBERT (Ours)	243	16.00	91.38 (↓ 30.3%)	39.0

Both high efficiency and estimation accuracy

HoT of reveals that maintaining the full-length pose sequence is redundant, and a few pose tokens of representative frames can achieve both high efficiency and performance. Our HoT achieves highly competitive or even better results while bringing significant improvements in efficiency compared to the original VPTs.

Hourglass Tokenizer for Efficient Transformer-Based 3D Human Pose Estimation

Wenhao Li¹ Mengyuan Liu¹ Hong Liu¹ Pichao Wang² Jialun Cai¹ Nicu Sebe³ ¹Peking University ²Amazon Prime Video ³University of Trento https://github.com/NationalGAILab/HoT

Simple baseline, general-purpose efficient transformer-based framework

HoT dis the first plug-and-play framework for efficient transformer-based 3D HPE. Unlike existing VPTs, which follow a "rectangle" paradigm that maintains the full-length sequence across all blocks, HoT begins with pruning the pose tokens of redundant frames and ends with recovering the full-length tokens (look like an "hourglass" $\overline{\mathbf{z}}$). It is a general-purpose pruningand-recovering framework, capable of being easily incorporated into common VPT models on both *seq2seq* and *seq2frame* pipelines while effectively accommodating various token pruning and recovery strategies.

Method **MixST** HoT w.

MixST TPC w.

Motion HoT w. Motion TPC w.

Ablation Study

Ablation study on *seq2seq* (*) and *seq2frame* (†)

1	Param (M)	FLOPs (G)	FPS	$ $ MPJPE \downarrow	Mathad
E [48] (*) MixSTE (*)	33.78 35.00	277.25 167.52 (↓ 39.6%)	10432 15770 († 51.2%)	40.9 41.0	MixSTE [4 Ours, Unife
E [48] (†) . MixSTE (†)	33.78 33.78	277.25 161.73 (↓ 41.7%)	43 68 (↑ 58.1%)	40.7 40.4	Ours, Atter Ours, Motie Ours, the P
BERT [52] (*) MotionBERT (*)) 16.00) 16.35	131.09 63.21 (↓ 51.8%)	14638 25526 († 74.4%)	39.8 39.8	Method MixSTE [4
BERT [52] (†) MotionBERT (†)) 16.00) 16.00	131.09 61.04 (↓ 53.4%)	60 109 († 81.7%)	39.5 39.2	Ours, Near Ours, Line Ours, the H

Ablation study on token pruning and recovering

			seq2s	eq	seq2frame		
	FN	$\operatorname{Full} \downarrow$	Pruned	\downarrow Selected \downarrow	Center \downarrow	Selecte	$d\downarrow$
8]	6.61	40.9	-	-	40.7	-	
orm Sampling	6.61	41.4	41.3	41.4	40.7	40.8	
tion Pruning	6.56	42.1	42.5	41.5	42.3	44.4	
on Pruning	7.00	42.8	43.4	41.6	41.3	42.3	
roposed TPC	6.63	41.0	41.3	40.2	40.4	39.4	
		Param	FLOPs	Full↓ Prun	$d \downarrow Sele$	ected \downarrow	Δ
48]		33.78	277.25	40.9	-	-	-
rest Interpolat	ion	33.78	161.73	41.5 42	2.2 4	40.2	2.0
ar Interpolation	on	33.78	161.73	41.3 41	.9 4	10.0	1.9
Proposed TRA		35.00	167.52	41.0 41	.3 4	40.2	1.1