

HUGS: Human Gaussian Splats

2

https://machinelearning.apple.com/research/hugs

Muhammed Kocabas^{1,2,3}, Rick Chang¹, James Gabriel¹, Oncel Tuzel¹, Anurag Ranjan¹

Goal Animatable humans and scene view synthesis Human Avatar

In-the-wild video

Scene view synthesis

Goal Animatable humans and scene view synthesis

Human Avatar

Scene view synthesis

Novel view & animation synthesis

Problem Existing NeRF-based approaches are slow

- Train time: 3-7 days
- Render time (HD): 4 mins

• NeuMan: Neural Human Radiance Field from a Single Video, Jiang etal., ECCV 2020

Human model

Problem Existing NeRF-based approaches are slow

- InstantAvatar: Learning Avatars from Monocular Video, Jiang etal., CVPR 2023
- Train time: 15-20 mins
- Render time (HD): 0.5 FPS

Problem 3DGS is fast with realtime rendering speed, but not animatable

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL*, Inria, Université Côte d'Azur, France GEORGIOS KOPANAS*, Inria, Université Côte d'Azur, France THOMAS LEIMKÜHLER, Max-Planck-Institut für Informatik, Germany GEORGE DRETTAKIS, Inria, Université Côte d'Azur, France

HUGS — Human Gaussian Splats

Canonical avatar

HUGS — Human Gaussian Splats

Preliminaries

3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL^{*}, Inria, Université Côte d'Azur, France GEORGIOS KOPANAS^{*}, Inria, Université Côte d'Azur, France THOMAS LEIMKÜHLER, Max-Planck-Institut für Informatik, Germany GEORGE DRETTAKIS, Inria, Université Côte d'Azur, France

Preliminary: 3D Gaussian Splatting (3DGS)

- NeRF (Neural Radiance Fields):
 - a NN encodes the radiance field
 - Rendering is performed using raymarching (costly)

NeRF: raymarching

3DGS: rasterization

Preliminary: 3D Gaussian Splatting (3DGS)

- 3DGS
 - 3D Gaussian primitives encode the baked radiance field
 - Rendering is performed using rasterization (fast)

NeRF: raymarching

3DGS: rasterization

Preliminary: SMPL body model

- Pose: skeleton configuration
- Shape: body shape variations (height, weight etc.)
- Canonical body mesh: T-pose
- Posed mesh: Linear Blend Skinning (LBS)

Method overview

frame 0 camera pose 0 SMPL pose 0 $(\boldsymbol{\theta}_0, \boldsymbol{\beta})$

frame 1 camera pose 1 SMPL pose 1 $(\boldsymbol{\theta}_1, \boldsymbol{\beta})$

frame t camera pose t SMPL pose t $(\boldsymbol{\theta}_t, \boldsymbol{\beta})$

frame 0 camera pose 0 SMPL pose 0 (θ_0, β)

frame 1 camera pose 1 SMPL pose 1 (θ_1, β)

frame t camera pose t SMPL pose t (θ_t, β)

canonical space

static scene Gaussians in the world coord.

frame 0 camera pose 0 SMPL pose 0 $(\boldsymbol{\theta}_0, \boldsymbol{\beta})$

frame 1 camera pose 1 SMPL pose 1 $(\boldsymbol{\theta}_1, \boldsymbol{\beta})$

frame t camera pose t SMPL pose t $(\boldsymbol{\theta}_t, \boldsymbol{\beta})$

canonical space

feature triplane

frame 0 camera pose 0 SMPL pose 0 $(\boldsymbol{\theta}_0, \boldsymbol{\beta})$

frame 1 camera pose 1 SMPL pose 1 $(\boldsymbol{\theta}_1, \boldsymbol{\beta})$

frame t camera pose t SMPL pose t $(\boldsymbol{\theta}_t, \boldsymbol{\beta})$

 \rightarrow color sph. harmonics

- opacity 0
- $\Delta \mu$ mean shifts
- *R* rotations
- $oldsymbol{S}$ scales
- W LBS weights

-

frame 0 camera pose 0 SMPL pose 0 $(\boldsymbol{\theta}_0, \boldsymbol{\beta})$

frame 1 camera pose 1 SMPL pose 1 $(\boldsymbol{\theta}_1, \boldsymbol{\beta})$

frame t camera pose t SMPL pose t $(\boldsymbol{\theta}_t, \boldsymbol{\beta})$

static scene Gaussians in the world coord.

 \rightarrow color sph. harmonics

- opacity 0
- $\Delta \mu$ mean shifts
- *R* rotations
- $oldsymbol{S}$ scales
- W LBS weights

human Gaussians in the world coord.

Loss function

• \mathscr{L}^h : || human-only image - segmented GT image ||

 $\mathcal{L} = \lambda_1 \mathcal{L}_1 + \lambda_2 \mathcal{L}_{\text{ssim}} + \lambda_3 \mathcal{L}_{\text{vgg}}$

scene + human

 $+\lambda_1 \mathcal{L}_1^h + \lambda_2 \mathcal{L}_{ssim}^h + \lambda_3 \mathcal{L}_{vgg}^h + \lambda_4 \mathcal{L}_{LBS},$ human

Adaptive Control of the number of Gaussians

and opacity

Clone, split, prune Gaussians based on screen-space positional gradients

Test time

- Rendering speed: 60 FPS.
- Evaluate Triplane+MLP for each subject once.
- Skinning and 3DGS rendering are the only operations

Results

Canonical avatar

Novel scene + multiperson

HUGS vs NeuMan

HUGS

NeuMan

HUGS

NeuMan

HUGS

NeuMan

Ablation experiments

c. HUGS--TM

Conclusion

HUGS: Human Gaussian Splats

Project page: <u>https://machinelearning.apple.com/research/hugs</u> **Code:** <u>https://github.com/apple/ml-hugs</u>

