

SD-DiT: Unleashing the Power of Self-supervised Discrimination in Diffusion Transformer

Rui Zhu, Yingwei Pan, Yehao Li, Ting Yao, Zhenglong Sun, Tao Mei, Chang Wen Chen

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

智蒙末来 HiDream.ai

Diffusion Transformer - Scalable but Slow Convergence

DiT: Scalable Arxiv 2022.12 MDT: Fast Convergence Arxiv 2023.03 MaskDiT: Efficiency Arxiv 2023.06

Peebles, William, and Saining Xie. "Scalable diffusion models with transformers." ICCV 2023.
 Gao, Shanghua, et al. "Masked diffusion transformer is a strong image synthesizer." ICCV 2023.

[3] Zheng, Hongkai, et al. "Fast training of diffusion models with masked transformers." TMLR 2024.

Why Bring Mask to DiT – Contextual Relation inside View

Mask Generative Diffusion < Reconstruction Loss Loss Decoder Xvisible Visible Learnable features Mask Tokens MDT: Intra-view Self-Reconstruction via mask Encoder brings contextual relation learning $X_{\sigma}^{\text{visible}}$ $X_{\sigma}^{\text{invisible}}$ MaskDiT: Mask Mask brings training efficiency Noised Image X_a with only 50% input

[1] Gao, Shanghua, et al. "Masked diffusion transformer is a strong image synthesizer." ICCV 2023.[2] Zheng, Hongkai, et al. "Fast training of diffusion models with masked transformers." TMLR 2024.

Can we impose Inter-view Discrimination to DiT?

Representation Learning

Generative Modeling

How to construct discriminative view pair for Generative Diffusion Transformer?

Contrastive Self-supervised Learning relies on Data Augmentation for positive pair

[1] https://github.com/google-research/simclr

Can we impose Inter-view Discrimination to DiT?

Representation Learning

Generative Modeling

$p_{data \odot Aug} \rightarrow p_{data}$

[2] Song, Yang, Dhariwal Prafulla, Chen Mark, Sutskever Ilya. "Consistency models." ICML 2023.

Inspired by Consistency models, whose outputs of the points on the same PF-ODE trajectory are consistent

$$\begin{split} \boldsymbol{f}(\boldsymbol{x}_{\sigma},\sigma) &= \boldsymbol{f}(\boldsymbol{x}_{\sigma'},\sigma'), \quad \sigma,\sigma' \in [\sigma_{\min},\sigma_{\max}].\\ \boldsymbol{f}: (\boldsymbol{x}_{\sigma},\sigma) \mapsto \boldsymbol{x}_{\sigma_{\min}} \end{split}$$

We construct discriminative pair by adding noise $(x_{\sigma_{\rm S}}, x_{\sigma_{\rm T}})$ on the same PF-ODE

 $p_{\sigma_{\rm S}} \rightarrow p_{\sigma_{\rm T}}$

Preliminary

Generative Modeling

Consistency models, whose outputs of the points on the same PF-ODE trajectory are consistent

$$oldsymbol{f}(oldsymbol{x}_{\sigma},\sigma) = oldsymbol{f}(oldsymbol{x}_{\sigma'},\sigma'), \quad \sigma,\sigma' \in [\sigma_{\min},\sigma_{\max}].$$

 $oldsymbol{f}: (oldsymbol{x}_{\sigma},\sigma) \mapsto oldsymbol{x}_{\sigma_{\min}}$

We construct discriminative pair by adding noise $(x_{\sigma_{\rm S}}, x_{\sigma_{\rm T}})$ on the same PF-ODE

$$p_{\sigma_{\rm S}} \rightarrow p_{\sigma_{\rm T}}$$

PF-ODE

$$d\boldsymbol{x}_t = [\boldsymbol{\mu}(\boldsymbol{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)] dt.$$

EDM utilizes $p_{\sigma}(\boldsymbol{x})$ instead of $p_t(\boldsymbol{x})$

$$\boldsymbol{\mu}(\boldsymbol{x},t) := \mathbf{0} \text{ and } g(t) := \sqrt{2t}$$

PF-ODE in EDM

$$egin{aligned} dm{x} &= -\sigma
abla_{m{x}} \log p_{\sigma}(m{x}) d\sigma, & \sigma \in [\sigma_{\min}, \sigma_{\max}], \ & p_{\sigma}(m{x}) &= p_{ ext{data}}(m{x}) * \mathcal{N}ig(m{0}, \sigma^2 \mathbf{I}) \ & m{x}_{\sigma} &= m{x}_0 + m{n}, \ m{n} \sim \mathcal{N}(m{0}, \sigma^2 \mathbf{I}) \end{aligned}$$

[1] Song, Yang, Dhariwal Prafulla, Chen Mark, Sutskever Ilya. "Consistency models." ICML 2023.

[2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." ICLR2021.

[3] Karras, Tero, et al. "Elucidating the design space of diffusion-based generative models." NeurIPS 2022.

SD-DiT: Discriminative Objective

$$\boldsymbol{x}_{\sigma_{\mathrm{S}}} = \boldsymbol{x}_{0} + \boldsymbol{n}, \ \boldsymbol{n} \sim \mathcal{N}(\boldsymbol{0}, \sigma_{\mathrm{S}}^{2}\mathbf{I}), \ \sigma_{\mathrm{S}} \in [\sigma_{\min}, \sigma_{\max}]$$

$$oldsymbol{x}_{\sigma_{\mathrm{T}}} = oldsymbol{x}_{0} + oldsymbol{n}, \ oldsymbol{n} \sim \mathcal{N}(oldsymbol{0}, \sigma_{\mathrm{min}}^2 \mathbf{I})$$

$$P_{\mathbf{S}_i} = \frac{\exp(j_{\theta}(\boldsymbol{e}_{\mathbf{S}_i})/\tau_{\mathbf{S}})[k]}{\sum_{k=1}^{K} \exp(j_{\theta}(\boldsymbol{e}_{\mathbf{S}_i})/\tau_{\mathbf{S}})[k]},$$

$$\mathcal{L}_{\mathrm{D}}(i) = -\sum_{k} P_{\mathrm{T}_{i}} \log(P_{\mathrm{S}_{i}}).$$

Loss on visible tokens and CLS token:

$$\mathcal{L}_{\mathrm{D}} = \frac{1}{(1-\mathcal{M})} \sum_{i \in (1-\mathcal{M})} \mathcal{L}_{\mathrm{D}}(i) + \mathcal{L}_{\mathrm{D}}([\mathtt{CLS}]).$$

Various Teacher Noise in Discriminative Pair

Fuzzy relations: Mask Reconstruction vs. Generative Diffusion

Mask reconstruction loss wastes model capacity for representation learning and the learnable mask tokens.

SD-DiT: Decoupled Encoder-decoder w/o mask tokens

- $\blacktriangleright \quad \text{Decoder for generative loss:} \quad p_{\sigma} \rightarrow p_{data}$
- ▶ Encoder for discriminative loss: $p_{\sigma} \rightarrow p_{\min}$
- Keep masks for training efficiency and location contextual awareness.
- ▶ Remove the mask reconstruction loss $p_{\sigma \odot mask} \rightarrow p_{\sigma}$

(which wastes model capacity for representation learning)

Figure 5. FID vs. mask ratio on SD-DiT-S/2 with 400k steps.

Experiments on ImageNet: Fast Convergence

Method	Training Steps(k)	FID-50K↓	
DiT-S/2 [45]	400	68.40	
MDT-S/2 [19]	400	53.46	
SD-DiT-S/2	400	48.39	
DiT-B/2 [45]	400	43.47	
MDT-B/2 [19]	400	34.33	
SD-DiT-B/2	400	28.62	
DiT-XL/2 [45]	7000	9.62	
MaskDiT-XL/2 [73]	1300	12.15	
MDT-XL/2 [19]	1300	9.60	
SD-DiT-XL/2	1100	9.66	
SD-DiT-XL/2	1300	9.01	

Table 1. Performance comparison with state-of-the-art DiT-based approaches under various model sizes on ImageNet 256×256 for class-conditional image generation (batch size: 256).

Figure 4. Comparison of convergence speed with SOTA DiT-based approaches in DiT-XL backbone (batch size: 256). The results of DiT and MaskDiT are directly cited from MaskDiT [81]. Our SD-DiT-XL/2 consistently outperforms DiT-XL/2 and MaskDiT-XL/2 across training steps, leading to better training convergence.

Experiments on ImageNet: Compare with SOTAs

Method	Cost(Iter×BS)	FID↓	sFID↓	IS↑	Prec.↑	Rec.↑
VQGAN [16]	-	15.78	78.3	-	-	-
BigGAN-deep [5]	-	6.95	7.36	171.4	0.87	0.28
StyleGAN [57]	-	2.30	4.02	265.12	0.78	0.53
I-DDPM [43]	-	12.26	-	-	0.70	0.62
MaskGIT [9]	1387k×256	6.18	-	182.1	0.80	0.51
CDM [29]	-	4.88	-	158.71	-	-
ADM [14]	1980k×256	10.94	6.02	100.98	0.69	0.63
ADM-U [14]		7.49	5.13	127.49	0.72	0.63
LDM-8 [50]	4800k×64	15.51	-	79.03	0.65	0.63
LDM-4 [50]	178k×1200	10.56	-	103.49	0.71	0.62
MaskDiT-XL/2 [73]	2000k×1024	5.69	10.34	177.99	0.74	0.60
DiT-XL/2 [45]	7000k×256	9.62	6.85	121.50	0.67	0.67
MDT-XL/2 [19]	2500k×256	7.41	4.95	121.22	0.72	0.64
SD-DiT-XL/2	2400k×256	7.21	5.17	144.68	0.72	0.61

Table 2. Performance comparison with state-of-the-art methods on ImageNet 256×256 for class-conditional image generation. Similar to most DiT-based approaches, here we report the results of our SD-DiT in DiT-XL backbone with 256 batch size, while MaskDiT reports results with the largest batch size (1024).

Thanks for Listening!

Rui Zhu The Chinese University of Hong Kong, Shenzhen

Yingwei Pan HiDream.ai

Yehao Li HiDream.ai

Ting Yao HiDream.ai

Zhenglong Sun The Chinese University of Hong Kong, Shenzhen

Tao Mei HiDream.ai

Chang Wen Chen The Hong Kong Polytechnic University

Any question: ruizhu@link.cuhk.edu.cn