Google DeepMind

Frozen Feature Augmentation for Few-Shot Image Classification

Introduction

From Pretraining to Transfer Learning With Frozen Features

Vision models are usually pretrained on **large-datasets**, e.g., ImageNet-21k [Deng+, 2009] or JFT [Zhai+, 2022], and then adapted.

[Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, June 2009] [Zhai et al., "Scaling Vision Transformers", CVPR, June 2022]

Linear probing [Radford+, 2021] is an **effective** method to **transfer** vision models to other tasks [Dehghani+, 2023] using frozen features. [Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", ICML, July 2021] [Dehghani et al., "Scaling Vision Transformers to 22 Billion Parameters", ICML, July 2023]

Introduction

From Pretraining to Transfer Learning With Frozen Features

Vision models are usually pretrained on **large-datasets**, e.g., ImageNet-21k [Deng+, 2009] or JFT [Zhai+, 2022], and then adapted. [Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, June 2009] [Zhai et al., "Scaling Vision Transformers", CVPR, June 2022]

Linear probing [Radford+, 2021] is an **effective** method to **transfer** vision models to other tasks [Dehghani+, 2023] using frozen features. [Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", ICML, July 2021] [Dehghani et al., "Scaling Vision Transformers to 22 Billion Parameters", ICML, July 2023]

Known methods [Radford+, 2021; Dehghani+, 2023; Zhai+, 2023] **do not employ data augmentation** when training on frozen features. [Zhai et al., "Sigmoid Loss for Language-Image Pretraining", ICCV, October 2023]

At the same time, **data augmentation is known to be effective** [Cubuk+, 2019; Hendrycks+, 2020; Cubuk+, 2020; Müller & Hutter, 2021]. [Cubuk et al., "AutoAugment: Learning Augmentation Strategies From Data", CVPR, June 2019] [Hendrycks et al., "AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty", ICLR, April 2020] [Cubuk et al., "RandAugment: Practical Automated Data Augmentation With a Reduced Search Space", NeurIPS, December 2020] [Müller and Hutter, "TrivialAugment: Tuning-Free Yet State-of-the-Art Data Augmentation", ICCV, October 2021]

Introduction

From Pretraining to Transfer Learning With Frozen Features

Vision models are usually pretrained on **large-datasets**, e.g., ImageNet-21k [Deng+, 2009] or JFT [Zhai+, 2022], and then adapted. [Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, June 2009] [Zhai et al., "Scaling Vision Transformers", CVPR, June 2022]

Linear probing [Radford+, 2021] is an **effective** method to **transfer** vision models to other tasks [Dehghani+, 2023] using frozen features. [Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", ICML, July 2021] [Dehghani et al., "Scaling Vision Transformers to 22 Billion Parameters", ICML, July 2023]

Known methods [Radford+, 2021; Dehghani+, 2023; Zhai+, 2023] **do not employ data augmentation** when training on frozen features. [Zhai et al., "Sigmoid Loss for Language-Image Pretraining", ICCV, October 2023]

At the same time, **data augmentation is known to be effective** [Cubuk+, 2019; Hendrycks+, 2020; Cubuk+, 2020; Müller & Hutter, 2021].

[Cubuk et al., "AutoAugment: Learning Augmentation Strategies From Data", CVPR, June 2019] [Hendrycks et al., "AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty", ICLR, April 2020] [Cubuk et al., "RandAugment: Practical Automated Data Augmentation With a Reduced Search Space", NeurIPS, December 2020] [Müller and Hutter, "TrivialAugment: Tuning-Free Yet State-of-the-Art Data Augmentation", ICCV, October 2021]

In a **data-constrained**, **few-shot setup** we investigate:

Research question:

Can we effectively combine image augmentations and frozen features to train a lightweight model?

Training on Top of Frozen Features in Three Steps

Step 1: Select a (frozen) pretrained model and a layer/block to train on top of frozen features.

Step 2: Process images and cache the (frozen) features.

Step 3: Train a (lightweight) model on (augmented) frozen features.

Step 2: Process images and cache the (frozen) features.

Step 3: Train a (lightweight) model on (augmented) frozen features.

Step 3: Train a (lightweight) model on (augmented) frozen features.

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- **Most image augmentations** can be applied channel-wise, e.g., brightness adjustments.
- We **re-use these augmentations** in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- **Most image augmentations** can be applied channel-wise, e.g., brightness adjustments.
- We **re-use these augmentations** in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or f^* .

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- **Most image augmentations** can be applied channel-wise, e.g., brightness adjustments.
- We **re-use these augmentations** in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or f^* .

• We define **feature-to-image/image-to feature** transformations applied simultaneously on D_t channels.
 $\mathbf{t}_{f\rightarrow x} : \mathbb{R}^{\sqrt{N}\times\sqrt{N}\times D_t} \rightarrow \mathbb{I}^{\sqrt{N}\times\sqrt{N}\times D_t}$ $\mathbf{t}_{f\leftarrow x} : \mathbb{I}^{\sqrt{N}\times\sqrt{N}\times D_t} \rightarrow \mathbb{R}^{\sqrt{N}\times\sqrt{$

 $\boldsymbol{t_{f\rightarrow x}}:\mathbb{R}^{\sqrt{N}\times\sqrt{N}\times D_{\boldsymbol{t}}}\rightarrow\mathbb{I}^{\sqrt{N}\times\sqrt{N}\times D_{\boldsymbol{t}}}$

We perform a linear scaling:

$$
\boldsymbol{x_f} = \boldsymbol{t_{f \rightarrow x}}(\boldsymbol{f^*}) = \frac{\boldsymbol{f^*} - f_{\text{min}}}{f_{\text{max}} - f_{\text{min}}}
$$

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- **Most image augmentations** can be applied channel-wise, e.g., brightness adjustments.
- We **re-use these augmentations** in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or f^* .

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- **Most image augmentations** can be applied channel-wise, e.g., brightness adjustments.
- We **re-use these augmentations** in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or f^* .

By default, we have the same **mapping** and randomness across channels.

We tested **channel-wise interpretations**:

- Channel-wise randomness
-

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

Network architectures: Pure **image classification** pretraining: **Vision-language** pretraining:

Few-shot learning (1-, 5-, 10-, 25-shot):

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

We test **three** ViT models, **three** pretraining datasets, **eight** few-shot datasets, **eighteen** data augmentations …

… and compare to **two** baselines.

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

TL;DR

We test **three** ViT models, **three** pretraining datasets, **eight** few-shot datasets, **eighteen** data augmentations …

… and compare to **two** baselines.

In the following, we focus on a subset of our results.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

JFT-3B pretraining:

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
- The **gains** for **MAPwd diminish** with **higher shots**, but for **linear probe**

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

JFT-3B pretraining:

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
- The **gains** for **MAPwd diminish** with **higher shots**, but for **linear probe**

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

• The **gains** for **MAPwd diminish** with **higher shots**, but for **linear probe**

WebLI vision-language pretraining (based on SigLIP [Zhai+, 2023]): • On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).

[Zhai et al., "Sigmoid Loss for Language-Image Pretraining", ICCV, October 2023]

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
-

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

JFT-3B pretraining:

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
- The **gains** for **MAPwd diminish** with **higher shots**, but for **linear probe**

WebLI vision-language pretraining (based on SigLIP [Zhai+, 2023]):

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
- The **gains** for both **MAPwd** and **linear probe diminish** with **higher shots**.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across **7 few-shot datasets (SUN397, …)**, excluding ImageNet1k.

JFT-3B pretraining:

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
- The **gains** for **MAPwd diminish** with **higher shots**, but for **linear probe**

WebLI vision-language pretraining (based on SigLIP [Zhai+, 2023]):

- On average, we **improve** upon both baselines (**MAPwd**, **linear probe**).
- The **gains** for both **MAPwd** and **linear probe diminish** with **higher shots**.

Conclusion

We investigated 18 frozen feature augmentations (FroFAs) for few-shot transfer learning for image classification.

We performed ablations along three axes: model size, pretraining, and transfer few-shot dataset.

Our main takeaways:

(a) Shown in this talk:

- Our best FroFA **excels** on **smaller few-shot datasets**.
- Our best FroFA **transfers** to **vision-language pretrained models**.

Conclusion

We investigated 18 frozen feature augmentations (FroFAs) for few-shot transfer learning for image classification.

We performed ablations along three axes: model size, pretraining, and transfer few-shot dataset.

Our main takeaways:

(a) Shown in this talk:

- Our best FroFA **excels** on **smaller few-shot datasets**.
- Our best FroFA **transfers** to **vision-language pretrained models**.

(b) Not shown in this talk:

- Training with **stylistic FroFAs** give **large improvements** upon a representative baseline across all shots.
- **Channel variants** can yield to **further improvements**.
- **Sequential protocols** seem **promising** for future works, given our simple proof of concept.

For more details, checkout our paper or let's have a chat at the conference!

Thank you.

Link to our paper:

Google DeepMind

TU Braunschweig

Neil Houlsby *Google DeepMind*

Mostafa Dehghani *Google DeepMind*

Manoj Kumar *Google DeepMind*