Google DeepMind

Frozen Feature Augmentation for Few-Shot Image Classification

Introduction

From Pretraining to Transfer Learning With Frozen Features

Vision models are usually pretrained on large-datasets, e.g., ImageNet-21k [Deng+, 2009] or JFT [Zhai+, 2022], and then adapted. [Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, June 2009] [Zhai et al., "Scaling Vision Transformers", CVPR, June 2022]

Linear probing [Radford+, 2021] is an effective method to transfer vision models to other tasks [Dehghani+, 2023] using frozen features. [Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", ICML, July 2021] [Dehghani et al., "Scaling Vision Transformers to 22 Billion Parameters", ICML, July 2023]

Introduction

From Pretraining to Transfer Learning With Frozen Features

Vision models are usually pretrained on large-datasets, e.g., ImageNet-21k [Deng+, 2009] or JFT [Zhai+, 2022], and then adapted. [Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, June 2009] [Zhai et al., "Scaling Vision Transformers", CVPR, June 2022]

Linear probing [Radford+, 2021] is an effective method to transfer vision models to other tasks [Dehghani+, 2023] using frozen features. [Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", ICML, July 2021] [Dehghani et al., "Scaling Vision Transformers to 22 Billion Parameters", ICML, July 2023]

Known methods [Radford+, 2021; Dehghani+, 2023; Zhai+, 2023] do not employ data augmentation when training on frozen features. [Zhai et al., "Sigmoid Loss for Language-Image Pretraining", ICCV, October 2023]

At the same time, data augmentation is known to be effective [Cubuk+, 2019; Hendrycks+, 2020; Cubuk+, 2020; Müller & Hutter, 2021]. [Cubuk et al., "AutoAugment: Learning Augmentation Strategies From Data", CVPR, June 2019] [Hendrycks et al., "AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty", ICLR, April 2020] [Cubuk et al., "RandAugment: Practical Automated Data Augmentation With a Reduced Search Space", NeurIPS, December 2020] [Müller and Hutter, "TrivialAugment: Tuning-Free Yet State-of-the-Art Data Augmentation", ICCV, October 2021]

Introduction

From Pretraining to Transfer Learning With Frozen Features

Vision models are usually pretrained on large-datasets, e.g., ImageNet-21k [Deng+, 2009] or JFT [Zhai+, 2022], and then adapted. [Deng et al., "ImageNet: A Large-Scale Hierarchical Image Database", CVPR, June 2009] [Zhai et al., "Scaling Vision Transformers", CVPR, June 2022]

Linear probing [Radford+, 2021] is an effective method to transfer vision models to other tasks [Dehghani+, 2023] using frozen features. [Radford et al., "Learning Transferable Visual Models From Natural Language Supervision", ICML, July 2021] [Dehghani et al., "Scaling Vision Transformers to 22 Billion Parameters", ICML, July 2023]

Known methods [Radford+, 2021; Dehghani+, 2023; Zhai+, 2023] do not employ data augmentation when training on frozen features. [Zhai et al., "Sigmoid Loss for Language-Image Pretraining", ICCV, October 2023]

At the same time, data augmentation is known to be effective [Cubuk+, 2019; Hendrycks+, 2020; Cubuk+, 2020; Müller & Hutter, 2021]. [Cubuk et al., "AutoAugment: Learning Augmentation Strategies From Data", CVPR, June 2019] [Hendrycks et al., "AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty", ICLR, April 2020] [Cubuk et al., "RandAugment: Practical Automated Data Augmentation With a Reduced Search Space", NeurIPS, December 2020] [Müller and Hutter, "TrivialAugment: Tuning-Free Yet State-of-the-Art Data Augmentation", ICCV, October 2021]

In a data-constrained, few-shot setup we investigate:

Research question:

Can we effectively combine image augmentations and frozen features to train a lightweight model?

Training on Top of Frozen Features in Three Steps

Step 1: Select a (frozen) pretrained model and a layer/block to train on top of frozen features.

	N: # image patches
H : image height	D : hidden size
W : image width	S : # classes
C : # color channels	L : # Transformer blocks

Step 2: Process images and cache the (frozen) features.

Step 3: Train a (lightweight) model on (augmented) frozen features.

Step 2: Process images and cache the (frozen) features.

Step 3: Train a (lightweight) model on (augmented) frozen features.

Step 3: Train a (lightweight) model on (augmented) frozen features.

 $N \times D$

N × D

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^{*} .

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^{st} .

- Most image augmentations can be applied channel-wise, e.g., brightness adjustments.
- We re-use these augmentations in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- Most image augmentations can be applied channel-wise, e.g., brightness adjustments.
- We re-use these augmentations in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or $f^{st}.$

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between $oldsymbol{x}$ and $oldsymbol{f}$ or $oldsymbol{f}^*$.

Step 2: Address the value range mismatch between x and f or f^* .

• We define feature-to-image/image-to feature transformations applied simultaneously on D_t channels. $\boldsymbol{t_{f \leftarrow x}}: \mathbb{I}^{\sqrt{N} \times \sqrt{N} \times D_{t}} \to \mathbb{R}^{\sqrt{N} \times \sqrt{N} \times D_{t}}$

 $\boldsymbol{t_{f \to x}}: \mathbb{R}^{\sqrt{N} \times \sqrt{N} \times D_t} \to \mathbb{I}^{\sqrt{N} \times \sqrt{N} \times D_t}$

We perform a linear scaling:

$$\boldsymbol{x_f} = \frac{\boldsymbol{t_{f \to x}}}{f_{\max}}(\boldsymbol{f}^*) = \frac{\boldsymbol{f}^* - f_{\min}}{f_{\max} - f_{\min}}$$

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- Most image augmentations can be applied channel-wise, e.g., brightness adjustments.
- We re-use these augmentations in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or $f^{st}.$

• We define feature-to-image/image-to feature transformations applied simultaneously on D_t channels.

$$\begin{array}{c} \boldsymbol{t_{f \rightarrow x}} : \mathbb{R}^{\sqrt{N} \times \sqrt{N} \times D_{t}} \rightarrow \mathbb{I}^{\sqrt{N} \times \sqrt{N} \times D_{t}} & \boldsymbol{t_{f \leftarrow x}} : \mathbb{I}^{\sqrt{N} \times \sqrt{N} \times D_{t}} \rightarrow \mathbb{R}^{\sqrt{N} \times \sqrt{N} \times D_{t}} \\ \text{We perform a linear scaling:} \\ \boldsymbol{x_{f}} = \boldsymbol{t_{f \rightarrow x}}(f^{*}) = \frac{f^{*} - f_{\min}}{f_{\max} - f_{\min}} \\ \text{Step 3: Putting all together} \rightarrow \text{FroFA}(\boldsymbol{a_{f}}): & \boldsymbol{t_{f \leftarrow x}} \\ \boldsymbol{a_{f}} = \boldsymbol{t_{f \leftarrow x}} \circ \boldsymbol{a_{x}} \circ \boldsymbol{t_{f \rightarrow x}} & \dots \text{ with } \boldsymbol{a_{x}} : \mathbb{I}^{\sqrt{N} \times \sqrt{N} \times D_{a}} \rightarrow \mathbb{I}^{\sqrt{N} \times \sqrt{N} \times D_{a}} \end{array}$$

From Image Augmentations to Frozen Feature Augmentations (FroFAs)

Step 1: Address the channel dimensionality mismatch between x and f or f^* .

- Most image augmentations can be applied channel-wise, e.g., brightness adjustments.
- We re-use these augmentations in the feature space and ignore image augmentations relying on three color channels, e.g., color jitter.

Step 2: Address the value range mismatch between x and f or f^* .

By default, we have the same mapping and randomness across channels.

We tested channel-wise interpretations:

- Channel-wise randomness
- Channel-wise mapping/randomness

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

Network architectures:

Pure **image classification** pretraining: **Vision-language** pretraining:

ViT Model	# Params (M)
Ti/16	5.5
B/16	86.0
L/16	303.0

Dataset	# Images
JFT-3B	~ 3 billion
ImageNet-21k	~ 14 million

5	J	
Dataset	# Images-text pairs	Da
WebLI	~ 31 billion	Im
		CI
		CI
		DN
		D
		Re
		SL

Few-shot learning (1-, 5-, 10-, 25-shot):

Dataset	# Classes
lmageNet1k	1000
CIFAR10	10
CIFAR100	100
DMLab	6
DTD	47
Resisc45	45
SUN397	397
SVHN	10

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

Pure image classification pretraining: Vision-language pretraining: Network architectures: Few-shot learning (1-, 5-, 10-, 25-shot): ViT Model # Params (M) Dataset # Images Dataset # Images-text pairs Dataset # Classes Ti/16 5.5 JFT-3B ~ 3 billion WebLI ~ 31 billion ImageNet1k 1000 B/16 ImageNet-21k CIFAR10 86.0 ~ 14 million 10 Crop & Drop L/16 303.0 CIFAR100 100 Other crop . **JPEG** resized crop DMLab 6 mixup inception crop patch dropout **Baseline models:** DTD 47 Data augmentation **Stylistic** Baseline Input size Regularization Resisc45 45 brightness contrast • Geometric $N \times D$ MAPwd weight decay SUN397 397 equalize ٠ rotate invert • $1 \times D$ shear-x. L2 regularization Linear probe **SVHN** 10 posterize • shear-v. sharpness translate-x. our lightweight model. penultimate output of solarize but without FroFA the pretrained model translate-y

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

TL;DR

We test three ViT models, three pretraining datasets, eight few-shot datasets, eighteen data augmentations ...

... and compare to **two** baselines.

Network Architectures, Baseline Models, Pretraining/Few-Shot Transfer Datasets, Data Augmentation

TL;DR

We test three ViT models, three pretraining datasets, eight few-shot datasets, eighteen data augmentations ...

... and compare to **two** baselines.

In the following, we focus on a subset of our results.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across 7 few-shot datasets (SUN397, ...), excluding ImageNet1k.

top-1 accuracy	[%]		Sho	ots		top-1 accuracy [%]		Sho	ots	
Pretraining scheme	Method	1	5	10	25	Pretraining scheme	Method	1	5	10	25
	MAP ^{wd}						MAP ^{wd}				
JFT-3B	Linear probe					WebLI + SigLIP	Linear probe				
	MAP ^{wd} + FroFA (ours)						MAP ^{wd} + FroFA (ours)				

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across 7 few-shot datasets (SUN397, ...), excluding ImageNet1k.

top-1 accuracy	[%]		Sho	ots	
Pretraining scheme	Method	1	5	10	25
JFT-3B	MAP ^{wd}	49.5	65.8	68.3	74.1
	Linear probe	49.1	62.7	65.7	68.8
	MAP ^{wd} + FroFA (ours)	53.4	67.3	70.9	74.9

top-1 accuracy [%]			Sh	ots	
Pretraining scheme	Method	1	5	10	25
	MAP ^{wd}				
WebLI + SigLIP	Linear probe				
	MAP ^{wd} + FroFA (ours)				

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across 7 few-shot datasets (SUN397, ...), excluding ImageNet1k.

top-1 accuracy	[%]		She	ots	
Pretraining scheme	Method	1	5	10	25
	MAP ^{wd}	49.5	65.8	68.3	74.1
JFT-3B	Linear probe	49.1	62.7	65.7	68.8
	MAP ^{wd} + FroFA (ours)	53.4	67.3	70.9	74.9

top-1 accuracy [%]			Sh	ots	
Pretraining scheme	Method	1	5	10	25
	MAP ^{wd}				
WebLI + SigLIP	Linear probe				
	MAP ^{wd} + FroFA (ours)				

JFT-3B pretraining:

- On average, we **improve** upon both baselines (MAP^{wd}, linear probe).
- The gains for MAP^{wd} diminish with higher shots, but for linear probe increase with higher shots.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across 7 few-shot datasets (SUN397, ...), excluding ImageNet1k.

	-								
L.	- 2	n							0
	0	Μ		U.				ł	•

- On average, we **improve** upon both baselines (**MAP**^{wd}, **linear probe**).
- The gains for MAP^{wd} diminish with higher shots, but for linear probe increase with higher shots.

top-1 accuracy [%]			Sh	ots	
Pretraining scheme	Method	1	5	10	25
	MAP ^{wd}	45.9	67.7	71.8	75.1
WebLI + SigLIP	Linear probe	49.1	65.0	69.3	72.6
	MAP ^{wd} + FroFA (ours)	51.3	70.4	73.5	76.0
top-1 accuracy (absolute gains)	5 10 25 shots		MAP ^{wd} Iinear p	probe	

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

We compute the average gains across 7 few-shot datasets (SUN397, ...), excluding ImageNet1k.

1	Ε.	Τ.	2	n	r.	ŀr			<u>.</u>		
9			9			UI.				9	•

- On average, we **improve** upon both baselines (MAP^{wd}, **linear probe**).
- The gains for MAP^{wd} diminish with higher shots, but for linear probe increase with higher shots.

top-1 accuracy [%]		Shots					
Pretraining scheme	Method	1	5	10	25		
	MAP ^{wd}	45.9	67.7	71.8	75.1		
WebLI + SigLIP	Linear probe	49.1	65.0	69.3	72.6		
	MAP ^{wd} + FroFA (ours)	51.3	70.4	73.5	76.0		
top-1 accuracy (absolute gains)	5 10 25	-	MAP ^{wd} Iinear p	probe			

WebLI vision-language pretraining (based on SigLIP [Zhai+, 2023]): [Zhai et al., "Sigmoid Loss for Language-Image Pretraining", ICCV, October 2023]

- On average, we **improve** upon both baselines (MAP^{wd}, linear probe).
- The gains for both MAP^{wd} and linear probe diminish with higher shots.

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

L/16 Pretrained on JFT-3B or WebLI and Transferred to Seven Few-Shot Datasets Using a Channel Variant of Brightness FroFA

Conclusion

We investigated 18 frozen feature augmentations (FroFAs) for few-shot transfer learning for image classification.

We performed ablations along three axes: model size, pretraining, and transfer few-shot dataset.

Our main takeaways:

(a) Shown in this talk:

- Our best FroFA excels on smaller few-shot datasets.
- Our best FroFA transfers to vision-language pretrained models.

Conclusion

We investigated 18 frozen feature augmentations (FroFAs) for few-shot transfer learning for image classification.

We performed ablations along three axes: model size, pretraining, and transfer few-shot dataset.

Our main takeaways:

(a) Shown in this talk:

- Our best FroFA excels on smaller few-shot datasets.
- Our best FroFA transfers to vision-language pretrained models.

(b) Not shown in this talk:

- Training with stylistic FroFAs give large improvements upon a representative baseline across all shots.
- Channel variants can yield to further improvements.
- Sequential protocols seem promising for future works, given our simple proof of concept.

For more details, checkout our paper or let's have a chat at the conference!

Thank you.

Link to our paper:

Google DeepMind

Andreas Bär TU Braunschweig

Neil Houlsby Google DeepMind

Mostafa Dehghani Google DeepMind

Manoj Kumar Google DeepMind