

ISTITUTO ITALIANO DI TECNOLOGIA PATTERN ANALYSIS AND COMPUTER VISION



# DiffAssemble: A Unified Graph-Diffusion Model for 2D and 3D Reassembly

Gianluca Scarpellini<sup>\*1,2</sup>, Stefano Fiorini<sup>\*1</sup>, Francesco Giuliari<sup>\*1,2</sup> Pietro Morerio<sup>1</sup>, Alessio Del Bue<sup>1</sup>









\*Equal Contribution <sup>1</sup>PAVIS, Istituto Italiano di Tecnologia (IIT) <sup>2</sup>Università degli Studi di Genova

#### 2D & 3D Reassembly Tasks

**Problem.** Placing each individual component in its correct position and orientation to form a coherent structure







### DiffAssemble

General framework for solving reassembly tasks using graph representations and a diffusion model formulation



### **Graph Formulation**

**Features h**  $\in \mathbb{R}^d \rightarrow$  Features generated by a backbone **Position s**  $\in \mathbb{R}^n \rightarrow$  Represent the dimensionality of the continuous Euclidean space **Rotation**  $R \in SO(n) \rightarrow$  Represent the matrix belonging to the Special Orthogonal Group in *n* dimensions. We also define **r**, where  $f_r(\mathbf{r}) = R$ .





# The Key Point of Using Diffusion

Create random starting scenarios and learn how to reverse this process step by steps



Reverse Denoising Process (Inference)

Forward Diffusion Process (Training)



## 3D Reassembly Task: Breaking Bad

Number of Objects. Contains around 10k meshes from PartNet and Thingi10k.

**Pieces.** Number of re-compute 20 fracture modes and then simulate 80 fractures from them, resulting in a total of 1,047,400 breakdown patterns.

Subsets. Everyday, Artifact and Other to facilitate different applications.



[1] Sellán, Silvia, et al. "Breaking bad: A dataset for geometric fracture and reassembly." Advances in Neural Information Processing Systems 35 (2022).



## **3D Reassembly Task: Results**

| Method                              | $\frac{\text{RMSE}(R)\downarrow}{\text{degree}}$ | $\frac{\text{RMSE}(T)\downarrow}{\times 10^{-2}}$ | PA↑<br>% |     |
|-------------------------------------|--------------------------------------------------|---------------------------------------------------|----------|-----|
| Global [34]                         | 81.6                                             | 15.2                                              | 17.5     | -   |
| DGL [34]                            | 81.4                                             | <u>14.9</u>                                       | 25.4     |     |
| LSTM [34]                           | 87.4                                             | 15.8                                              | 11.3     | · · |
| SE(3)-Equiv [46]                    | <u>77.9</u>                                      | 16.7                                              | 8.1      |     |
| DiffAssemble - No Diffusion Process | 83.6                                             | 17.1                                              | 3.1      |     |
| DiffAssemble - No Equivariant Enc.  | 81.7                                             | 17.0                                              | 18.3     |     |
| DiffAssemble                        | 73.3                                             | 14.8                                              | 27.5     |     |

#### Insights

- No trade accuracy between rotation and translation
- Benefit in deploying the Diffusion Process and the Equivariant Backbone



## 2D Reassembly Task: Dataset





**CelebA-HQ.** Contains 30K images of celebrities in High Definition (HD). The images are cropped and positioned to show only centered faces.[1]

WikiArt. Contains 63K images of paintings in HD. This dataset contains paintings with very different content and artistic styles.[2]

[1] Lee, Cheng-Han, et al. "Maskgan: Towards diverse and interactive facial image manipulation." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020.

[2] Tan, Wei Ren, et al. "Improved ArtGAN for conditional synthesis of natural image and artwork." IEEE Transactions on Image Processing 28.1 (2018).



### 2D Reassembly Task: Results

|                       |                             | DATASET      |              |       |                |              |              |              |              |
|-----------------------|-----------------------------|--------------|--------------|-------|----------------|--------------|--------------|--------------|--------------|
| Method                |                             | PuzzleCelebA |              |       | PuzzleWikiArts |              |              |              |              |
|                       |                             | 6x6          | 8x8          | 10x10 | 12x12          | 6x6          | <b>8x8</b>   | 10x10        | 12x12        |
| Optimization<br>Based | Gallagher [15]              | 80.21        | 55.18        | 71.19 | 69.81          | 71.88        | 61.63        | 54.15        | 44.68        |
|                       | Yu <i>et al</i> . [48]      | 98.63        | <u>94.65</u> | 98.33 | 93.33          | 94.62        | 92.95        | 90.99        | <b>89.88</b> |
|                       | Huroyan <i>et al</i> . [21] | 98.47        | 97.45        | 98.65 | <u>97.08</u>   | <u>92.69</u> | <u>91.37</u> | <u>89.74</u> | 88.28        |
| Learning<br>Based     | DiffAssemble - No Diff.     | <u>99.43</u> | 79.84        | 99.05 | 91.28          | 73.07        | 54.70        | 22.68        | 18.27        |
|                       | DiffAssemble - No Equiv.    | 96.12        | 71.62        | 91.98 | 64.15          | 25.31        | 14.63        | 8.19         | 4.96         |
|                       | DiffAssemble                | 99.51        | 87.66        | 99.30 | 97.76          | 90.65        | 72.79        | 63.33        | 53.08        |

|                | DATASET                                          |                                                  |  |  |  |  |
|----------------|--------------------------------------------------|--------------------------------------------------|--|--|--|--|
| Method         | CelebA                                           | WikiArts                                         |  |  |  |  |
|                | 6x6 12x12                                        | 6x6 12x12                                        |  |  |  |  |
| Gallagher [15] | 33.28 19.18<br>(-46.93) (-50.63)                 | 32.19 24.12<br>(-39.69) (-20.56)                 |  |  |  |  |
| Yu [21]        | $\frac{33.45}{(-66.85)}  \frac{21.78}{(-72.84)}$ | $\frac{32.53}{(-62.09)}  \frac{24.65}{(-65.23)}$ |  |  |  |  |
| Huroyan [48]   | 18.18 0.09<br>(-80.29) (-88.45)                  | 17.14 0.08<br>(-75.55) (-80.28)                  |  |  |  |  |
| DiffAssemble   | <b>96.92 76.49</b><br>(-2.59) (-32.81)           | <b>51.21 27.09</b><br>(-39.44) (-25.99)          |  |  |  |  |

#### Insights

- We do not rely only on visual appearances but also on the semantic content
- We are robust to real-scenarios like missing pieces



## Scaling to Larger Graphs: Results

**Dataset.** PuzzleCelebA **Implementation Details.** Puzzles of 900 pieces (30 x 30 puzzles)





#### Insights

• The sparsity attention mechanism reduces 2.5x the GPU memory

#### Insights

- Faster than optimization-based model
- No reduction in Accuracy



## **Conclusion & Future Work**

- Introduction of DiffAssemble, a general framework for tackling sorting tasks via graph representations and a diffusion model formulation
- Demonstration of the effectiveness of our method spanning 3D object reassembly and 2D puzzles with translated and rotated pieces:
  - Robustness compared to optimization-based methods
  - State-of-the-art results in 3D domain
  - Possibility to scale on larger graphs

