

Common issues for previous VFI methods:

- Blur and ghosting effects persist.
- \succ Unavoidable motion errors are overlooked.
- \succ Mis-alignment in supervision.

Solution

PerVFI address the above issues by:

- \succ Asymmetric synergistical blending scheme.
- Normalizing flow-based network as generator.

Framework

- Utilizing optical flow as motion input, adaptable to diverse optical flow estimators.
- Leveraging PAM for alignment and ADM for sparsity mask to blend features.
- > PAM is used for alignment. ADM is used to apply sparsity during blending.
- Incorporating a normalizing flow-based generator that utilizes multi-scale features as conditions.

 f_0

 $f_{t,1}^{\iota}$

-ramework

(a) Overall Framework

(b) Asymmetric Synergistic Blending

(d) ADM Structure. It produces a quasi-binary mask for future blending.

NOTE: This framework is simple yet highly effective. While each component is widely used on its own, their integration leads to exceptional performance.

Experiment Result

Performance comparison of VFI algorithms on DAVIS-2017 [41]. The scores for LDMVFI [11] are taken from their paper and Table 3. Comparisons of running time, MACs and number of parameters. The

			DAVIS (48	80P)				DAVIS (10	980P)		Methods	Runtime (s) \downarrow	MACs (G) \downarrow	#Params (M) ↓	
	PSNR ↑	SSIM \uparrow	LPIPS↓	FloLPIPS↓	VFIPS↑	PSNR ↑	SSIM ↑	LPIPS↓	FloLPIPS↓	VFIPS↑	EDSC [3]	0.077	71 826	8 9/15	
EDSC [5]	26.52	0.784	0.132	0.093	72.62	24.54	0.768	0.205	0.138	51.05	XVFI [14]	0.067	70.725	5 577	
RIFE [17] STMENet [8]	26.97	0.807	<u>0.085</u> 0.121	<u>0.063</u> 0.086	<u>80.19</u> 77 38	25.89	0.803	$\frac{0.134}{0.178}$	<u>0.097</u> 0.110	<u>62.56</u> 60.25	RIFE[6]	0.037	52.247	2 278	
LDMVFI [11]	2 <u>8.55</u> 25.54 †	<u>0.850</u> -	0.121 0.107 [†]	0.153 [†]	75.78 [†]	-	<u>0.044</u> -	-	-	-	EBME[8]	0.079	43.731	3.908	
VFIFormer [34]	27.33	0.814	0.124	0.090	77.32	OOM	OOM	OOM	OOM	OOM	STMFNet [5]	0.206	876.156	17.960	
EMA-VFI [59]	28.83	0.856	0.127	0.085	78.84	27.61	0.846	0.203	0.131	60.87		0.200			
AMT [28] PerVFI (ours)	27.42 26.83	0.818 0.804	0.101 0.077	0.073 0.058	80.57 87.51	25.72 26.23	0.806 0.808	0.177 0.114	0.122 0.087	60.39 72.52	*PerVFI GMFlow+PerVFI	0.161 0.193	458.340 523 758	8.481 13.161	
able 2. Performance comparison of VFI algorithms on Xiph4K [37] and Vimeo-90K [57]. The best values are highlighted in red, while											RAFT+PerVFI	0.204	836.591	13.739	

e second-best values are in blue. OOM means out of memor

		Xiph - 2K		Xiph - "4K"			Vimeo-90K			Table 4. Comparisons of PerVFI with different optical flow estimators.					
	LPIPS↓	FloLPIPS↓	VFIPS↑	LPIPS↓	FloLPIPS↓	VFIPS↑	PSNR ↑	SSIM ↑	LPIPS↓	PerVFI can be adaptable to diverse optical flow estimators.					
EDSC [5]	0.085	0.072	64.73	0.177	0.120	51.24	34.86	0.961	0.027		DAVIS (480P)				
RIFE [17]	<u>0.041</u>	<u>0.050</u>	65.26	<u>0.099</u>	<u>0.067</u>	<u>54.31</u>	34.16	0.955	0.020		PSNR ↑	SSIM †	I PIPS	FIOL PIPS	VFIPS↑
STMFNet [8]	0.110	0.063	65.19	0.245	0.128	53.33	-	-	-						
VFIFormer [34]	OOM	OOM	OOM	OOM	OOM	OOM	36.38	0.971	0.021	RAFT-small+PerVFI	26.84	0.812	0.080	0.062	81.15
EMA-VFI [59]	0.110	0.081	65.12	0.241	0.114	53.57	36.34	0.967	0.026	GMFlow+PerVFI	27.13	<u>0.815</u>	0.077	0.058	82.98
AMT [28]	0.089	0.055	65.60	0.199	0.114	53.22	35.79	0.968	0.021	GMA+PerVFI	27.19	0.816	0.0753	0.057	83.34
PerVFI (ours)	0.038	0.032	68.67	0.086	0.062	57.47	33.89	0.953	0.018	RAFT+PerVFI	27.16	0.816	0.0751	0.056	<u>83.30</u>

- Key Insights & Future work
- > Using a sparse mask to blend two mis-aligned features linearly is what makes our pipeline "asymmetric." This straightforward approach results in exceptional performance.
- \succ Our network structure has not been meticulously optimized, leaving ample room for future improvements in both efficiency and performance.

 \succ The generator-based method addresses misalignment during supervision, yielding less blurry results.