

Carnegie Mellon University

国科学院深圳先进技术研究院 IENZHEN INSTITUTE OF ADVANCED

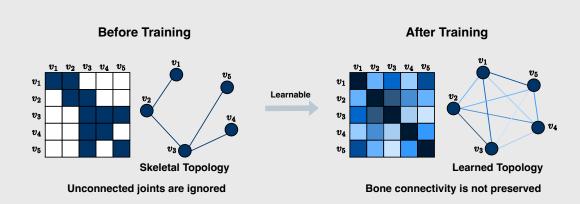
BlockGCN: Redefine Topology Awareness for Skeleton-Based Action Recognition

Yuxuan Zhou[†] Xudong Yan[†] Zhi-Qi Cheng^{*} Yan Yan Qi Dai Xian-Sheng Hua

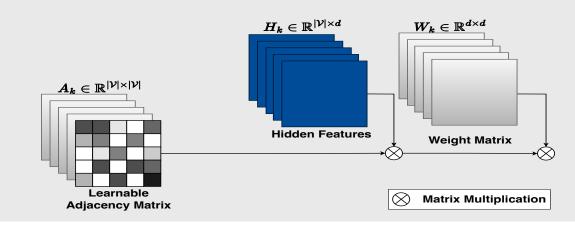
INTRODUCTION

Motivation

We reveal the remaining issues of previous GCNs Catastrophic Forgetting of skeletal topology



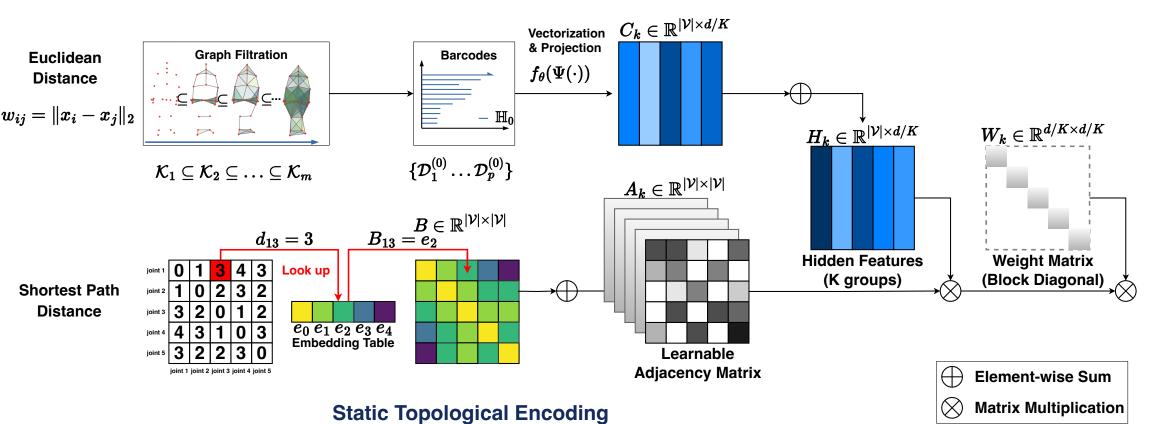
Inefficient multi-relational modeling



Contribution

- Identifying and restoring the overlooked skeletal topology in advanced GCNs via novel topological encoding schemes.
- Devising BlockGC, an efficient and powerful graph convolutional block.
- Establishing new state-of-the-art performance on standard benchmarks.

CodeLink: https://github.com/ZhouYuxuanYX/BlockGCN



Topological Encoding

Static Topological Encoding: we encode the relative distance between joints on the skeletal graph \mathscr{G}_{S} , using measures like Shortest Path Distance (SPD) or level structure distance.

$$B_{ij} = e_{d_{i,j}}$$

 $f_{\theta}: \mathbb{R}^{|\mathcal{V}| \times d'} \to \mathbb{R}^{|\mathcal{V}| \times d}$ at each layer:

Efficient Multi-Relational Modeling

We propose BlockGC, which efficiently models high-level semantics, reducing computation and parameters while outperforming previous methods. The feature dimension is divided into K groups, with spatial aggregation and feature projection applied in parallel within each group. The formula is as follows:

$$H^{(l)} = \sigma \left(\begin{bmatrix} (A_1 + B_1)(H_1^{(l-1)} + C_1^{(l-1)}) \\ \vdots \\ (A_K + B_K)(H_K^{(l-1)} + C_K^{(l-1)}) \end{bmatrix} \begin{bmatrix} W_1^{(l)} & & \\ & \ddots & \\ & & & W_K^{(l)} \end{bmatrix} \right)$$

METHOD

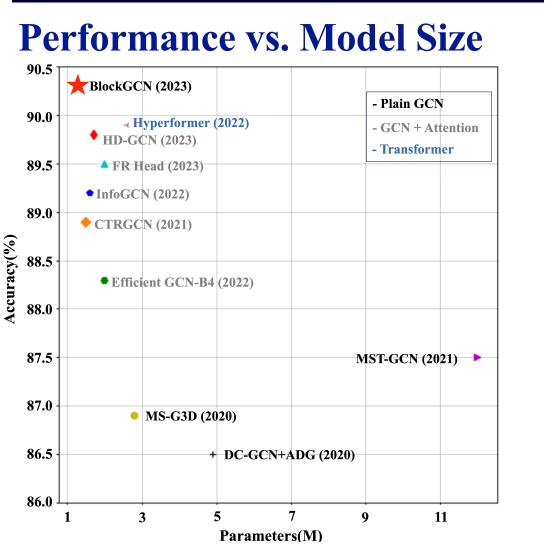
Dynamic Topological Encoding

with
$$d_{i,j} = \min_{P \in Paths(\mathscr{G}_{\mathbf{S}})} \left\{ \left| P \right| \mid P_1 = v_i, P_{|P|} = v_j \right\}$$

Dynamic Topological Encoding: we adopt the differentiable vectorization Ψ^0 : $\{\mathscr{D}^0_1, \mathscr{D}^0_2, ..., \mathscr{D}^0_p\} \to \mathbb{R}^{|\mathscr{V}| \times d'}$ on the barcodes.and project the obtained representation to GCN hidden layers' feature space through a mapping

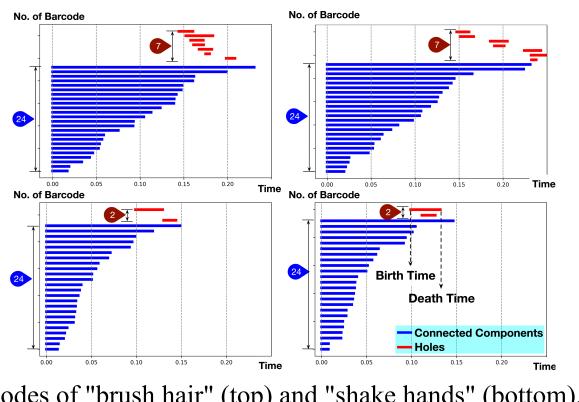
$$= f_{\theta} \left(\Psi^0 \left(\mathscr{D}_1^0, \mathscr{D}_2^0, ..., \mathscr{D}_p^0 \right) \right)$$

RESULTS

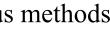


Our BlockGCN improves over previous methods w.r.t. both performance and efficiency.

Visualization of barcodes



Barcodes of "brush hair" (top) and "shake hands" (bottom)



[†] Internship at CMU. Equal contribution.