

Magic Tokens: Select Diverse Tokens for Multi-modal Object Re-Identification

Pingping Zhang^{1,2}, Yuhao Wang¹, Yang Liu¹, Zhengzheng Tu^{2,3} and Huchuan Lu¹
¹ School of Future Technology, School of Artificial Intelligence, Dalian University of Technology, China
² Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, China
³ School of Computer Science and Technology, Anhui University, China
{zhpp,ly,lhchuan}@dlut.edu.cn, 924973292@mail.dlut.edu.cn, zhengzhengahu@163.com

Email: 924973292@mail.dlut.edu.cn

GitHub: https://github.com/924973292/EDITOR

IIAU-LAB

Presenter: Yuhao Wang

DLUT

Background

In challenging visual environments, the salient information

about the object in RGB images is severely disrupted,

resulting in poor robustness of existing single-modal methods.

Multi-modal Object ReID

Y. Wang, et al., TOP-ReID: Multi-spectral Object Re-Identification with Token Permutation, AAAI2024

Motivation

Within individual modalities, backgrounds introduce

additional noise, especially in challenging visual scenarios.

• Across different modalities, backgrounds introduce overhead

```
in reducing modality gaps.
```

٠

Preserving the diverse features of different modalities!

Minimizing background interference!

Overall Architecture

Modules

Spatial-based Selection

Frequency-based Selection

Multi-modal Testing

Table 1. Performance comparison on three multi-modal object ReID benchmarks. The best and second results are in bold and underlined, respectively. *denotes Transformer-based methods, while the rest are CNN-based methods. Both single-modal and multi-modal methods are included. For the comparison between TOP-ReID and EDITOR, A and B means the AL setting and BL setting [43], respectively.

		(a) Comparison on RGBNT201.				(1	(b) Comparison on RGBNT100 and MSVR310.						
				RGBNT201				Methods		RGBNT100		R310	
		Methods	$\mathbf{m} \Delta \mathbf{P} = \mathbf{R}_{-1} + \mathbf{R}_{-5} + \mathbf{R}_{-10}$			R-1	mAP			R-1	- -		
			IIIAI	K-1	K-5	K -10		PCB [34]	57.2	83.5	23.2	42.9	
		MUDeep [30]	23.8	19.7	33.1	44.3		MGN [40]	58.1	83.1	26.2	44.3	
		HACNN [18]	21.3	19.0	34.1	42.8	Single	DMML [3]	58.5	82.0	19.1	31.1	
		MI FN [2]	26.1	24.2	35.0	44 1		BoT [26]	78.0	95.1	23.5	38.4	
	Single		20.1	24.2	55.7			OSNet [57]	75.0	95.6	28.7	44.8	
		PCB [34]	32.8	28.1	37.4	46.9		Circle Loss [35]	59.4	81.7	22.7	34.2	
		OSNet [57]	25.4	22.3	35.1	44.7		HRCN [52]	67.1	91.8	23.4	44.2	
		CAL [32]	27.6	24.3	36.5	45.7		AGW [47]	73.1	92.7	28.9	46.9	
			27.0	200	41.5	51.7		IranskeiD* [13]	/5.0	92.9	18.4	29.6	
		HAMNet [17]	21.1	26.3	41.5	51.7	5.7 5.4 5.6 Multi	HAMINET [1/]	74.5 69.1	93.3	27.1	42.5	
		PFNet [53]	38.5	38.9	52.0	58.4		CAENet [0]	08.1 74.4	94.1	23.3	57.4	
		IEEE [44]	49.5	48.4	59.1	65.6		CCNet [54]	77.2	95.4 96.3	36.4	55.2	
	Multi	DENet [55]	42.4	42.2	55.3	64.5		GraFT* [48]	76.6	94.3	-	-	More
		UniCat* [4]	57.0	55 7				GPFNet [12]	75.0	94.5	-	-	
		UniCat [*] [4]	57.0	55.7	-	-		PHT* [29]	79.9	92.7	-	-	Competitive
		TOP-ReID (A)* [43]	72.3	76.6	84.7	89.4		UniCat* [4]	79.4	96.2	-	-	competitive:
		TOP-ReID (B)* [43]	64.6	64.6	77.4	82.4		TOP-ReID (A)* [43]	73.7	92.2	30.2	33.7	
	CL-LI-	EDITOR (A)*	66 5	68 3	811	88 2		TOP-ReID (B)* [43]	<u>81.2</u>	<u>96.4</u>	35.9	44.6	
More	Staple!		00.2		EDITOR (A)*	79.8	93.9	35.8	43.1				
		EDITOR (B)*	65.7	<u>68.8</u>	<u>82.5</u>	<u>89.1</u>		EDITOR (B)*	82.1	96.4	39.0	<u>49.3</u>	

	Module		L	OSS	RGBNT201				
	SFTS	HMA	BCC	OCFR	mAP	R-1	R-5	R-10	
Α	X	Х	×	×	54.0	53.5	70.2	78.8	
В	×	\checkmark	×	×	60.7	62.4	77.2	83.6	
С	1	\checkmark	×	×	62.2	65.0	79.3	85.4	
D	1	\checkmark	1	×	65.2	65.9	82.2	87.1	
E	1	\checkmark	×	1	64.8	66.9	82.3	87.3	
F	1	\checkmark	1	\checkmark	65.7	68.8	82.5	89.1	

SFTS: Selecting Object-centirc Tokens

HMA: Aggregating Pure Multi-modal Features

BCC: Stablizing the Selection

OCFR: Suppressing background noise within modalities

Stable performance on both person and vehicle datasets

	Module I			OSS	RGBNT100				
	SFTS	HMA	BCC	OCFR	mAP	R-1	R-5	R-10	
Α	X	Х	×	×	75.1	93.4	95.0	95.8	
В	×	\checkmark	×	×	77.8	94.0	95.1	96.0	
С	1	\checkmark	×	×	79.1	94.3	95.3	96.1	
D	1	\checkmark	1	×	80.6	95.5	96.4	97.2	
E	1	\checkmark	×	\checkmark	80.4	94.8	95.5	96.3	
F	1	1	1	✓	82.1	96.4	96.9	97.4	

Methods	RGBNT201					
Wiethous	mAP	R-1	R-5	R-10		
w/o selection	60.7	62.4	77.2	83.6		
w/ separation	57.7	58.5	75.4	82.5		
w/ union	62.2	65.0	79.3	85.4		

Different modality selections are

significantly different!

That's why we introduce the

Modality-Union!

	Selection Methods	Reserved Tokens	RGBN	T201
Fraguency based The most collight parts [fixed]	Selection Methods	Average number	mAP	R-1
Frequency-based the most salient parts [fixed]	Modality	Average numberModality30.2Spatial55.0Frequency55.0ial+Frequency58.0	64.2	65.7
Spatial-based: ROI of the EDITOR [Learnable]	Spatial	55.0	65.0	66.8
	Frequency	55.0	64.1	65.3
	Spatial+Frequency	58.0	65.7	68.8

Spatial-based Token Selection [Learnable]

Frequency-based Token Selection [fixed]

With the increase in reserved tokens, the performance drops!

More noise from the background is introduced!

Parameter Comparison

Methods	Darams(M)	RGBNT100			
Wiethous	r aranis(ivi)	mAP	Rank-1		
PCB [34]	72.33	57.2	83.5		
OSNet [57]	7.02	75.0	95.6		
HAMNet [17]	78.00	74.5	93.3		
CCNet [54]	74.60	77.2	96.3		
GAFNet [9]	130.00	74.4	93.4		
TransReID* [13]	278.23	75.6	92.9		
UniCat* [4]	259.02	79.4	96.2		
GraFT* [48]	101.00	76.6	94.3		
TOP-ReID* [43]	324.53	<u>81.2</u>	<u>96.4</u>		
EDITOR*	118.55	82.1	96.4		

A more stable selection process

Parameter efficient!

More Stable!

Visualization

(d) Baseline + SFTS + HMA + OCFR + BCC.

More decentralized with different IDs !

Visualization

Figure 16. Visualization of selected tokens at different stages (Person). (a) RGB images; (b) NIR images; (c) TIR images; (d) Spatial-based token selection; (e) DHWT effect; (f) Frequency-based token selection; (g-i) Spatial-based token selection from RGB/NIR/TIR; (j-l) Final tokens for RGB/NIR/TIR. Note that we project the selected tokens back to the corresponding image regions.

Visualization

Figure 17. Visualization of selected tokens at different stages (Vehicle). (a) RGB images; (b) NIR images; (c) TIR images; (d) Spatialbased token selection; (e) DHWT effect; (f) Frequency-based token selection; (g-i) Spatial-based token selection from RGB/NIR/TIR; (j-l) Final tokens for RGB/NIR/TIR. Note that we project the selected tokens back to the corresponding image regions.

A novel multi-modal collaborative selection framework!

