### You Only Need Less Attention at Each Stage in Vision Transformers

Shuoxi Zhang, Hanpeng Liu, Stephen Lin, Kun He {zhangshuoxi, hanpengliu, brooklet60}@hust.edu.cn, stevelin@microsoft.com



# Background

- The computational complexity of the self-attention mechanism grows quadratically with the number of tokens.
- The computational burden becomes heavier with higher-resolution images.
- Training Vision Transformers (ViTs) often leads to attention saturation phenomena.

## Question & Answer

- Q Is it really necessary to consistently apply the self-attention mechanism throughout each stage of the network, from inception to conclusion?
- A Considering the attention saturation, we conclude that not all attention computation is necessary. Then we design the Less-Attention Module to alleviate the attention computation and attention saturation.

## Architecture



Figure 1. The architecture of our Less-Attention Vision Transformer (LaViT). The bottom part: the proposed Less-Attention layer, which together with conventional Transformer blocks in the preceding layers constitutes the feature extraction module of this stage.

$$\mathbf{A}_m^{\mathrm{VA},l} = \frac{\mathbf{Q}_m^l(\mathbf{K}_m^l)^{\mathsf{T}}}{\sqrt{d}}, \ l \le L_m^{\mathrm{VA}}.$$

$$\mathbf{A}_{m}^{l} = \Psi(\Theta(\mathbf{A}_{m}^{l-1})^{\mathsf{T}})^{\mathsf{T}}, \ L_{m}^{\mathsf{VA}} < l \leq L_{m},$$
$$\mathbf{Z}^{\mathsf{LA},l} = \mathsf{Softmax}(\mathbf{A}_{m}^{l})\mathbf{V}^{l}.$$

In each stage, we extract the feature representation in two phases. At the initial several Vanilla Attention (VA) layers, we conduct the standard M-SA operation to capture the overall long-range dependencies. Subsequently, we simulate the attention matrices to mitigate quadratic computation and address attention saturation at the following Less-Attention (LA) layers by applying a linear transformation to the stored attention scores.

## Extra designs

• Residual-based Attention Downsampling



• Diagonality Preserving Loss

$$egin{split} \mathcal{L}_{ ext{DP},l} &= \sum_{i=1}^N \sum_{j=1}^N |\mathbf{A}_{ij} - \mathbf{A}_{ji}| \ &+ \sum_{i=1}^N ((N-1)\mathbf{A}_{ii} - \sum_{j 
eq i} \mathbf{A}_j). \end{split}$$

## Experiments

| Model              | Params<br>(M) | FLOPs<br>(G) | Throughput<br>(image/s) | Top1<br>(%) |
|--------------------|---------------|--------------|-------------------------|-------------|
| ResNet-18          | 117           | 1.8          | 4454                    | 69.8        |
| RegNetY-1 6G       | 11.2          | 1.6          | 1845                    | 78.0        |
| DeiT-T             | 5.7           | 13           | 3398                    | 72.2        |
| PVT-T              | 13.2          | 19           | 1768                    | 75.1        |
| PVTv2-b1           | 13.1          | 2.1          | 1231                    | 78.7        |
| LaViT-T            | 10.9          | 1.6          | 2098                    | 79.2        |
| ResNet-50          | 25.0          | 4.1          | 1279                    | 76.2        |
| RegNetY-4G         | 20.6          | 4.0          | 1045                    | 79.4        |
| EfficientNet-B4    | 19.0          | 4.2          | 387                     | 82.4        |
| EfficientViT-B2    | 24.0          | 4.5          | 1587                    | 82.1        |
| DeiT-S             | 22.1          | 4.6          | 1551                    | 79.9        |
| DeepViT-S          | 27.0          | 6.2          | 1423                    | 82.3        |
| PVT-S              | 24.5          | 3.8          | 1007                    | 79.8        |
| CvT-S              | 25.8          | 7.1          | 636                     | 82.0        |
| Swin-T             | 28.3          | 4.5          | 961                     | 81.2        |
| PVTv2-b2           | 25.4          | 4.0          | 695                     | 82.0        |
| DynamicViT-S (90%) | 24.1          | 4.0          | 1524                    | 79.8        |
| EViT-S (90%)       | 23.9          | 4.1          | 1706                    | 79.7        |
| LiT-S              | 27.0          | 4.1          | 1298                    | 81.5        |
| PPT-S              | 22.1          | 3.1          | 1698                    | 79.8        |
| LaViT-S            | 22.4          | 3.3          | 1546                    | 82.6        |
| ResNet-101         | 45.0          | 7.9          | 722                     | 77.4        |
| ViT-B              | 86.6          | 17.6         | 270                     | 77.9        |
| DeiT-B             | 86.6          | 17.5         | 582                     | 81.8        |
| Swin-S             | 49.6          | 8.7          | 582                     | 83.1        |
| Swin-B             | 87.8          | 15.4         | 386                     | 83.4        |
| DynamicViT-B (90%) | 76.6          | 14.1         | 732                     | 81.5        |
| EViT-B (90%)       | 78.6          | 15.3         | 852                     | 81.3        |
| LiT-M              | 48.0          | 8.6          | 638                     | 83.0        |
| PPT-B              | 86.0          | 14.5         | 714                     | 81.4        |
| PVT-M              | 44.2          | 6.7          | 680                     | 81.2        |
| PVT-L              | 61.4          | 9.8          | 481                     | 81.7        |
| LaViT-B            | 39.6          | 6.1          | 877                     | 83.1        |

Table 2. Comparison of different backbones on ImageNet-1K classification. Except for EfficientNet (EfficientNet-B4), all models are trained and evaluated with an input size of  $224 \times 224$ . The least computations and fastest throughput appear in **blue bold**, and the best results appear in **bold**.<sup>1</sup>

| Backbone      | #Param. FLOPs |     | RetinaNet 1×    |             |             |          | RetinaNet $3 \times + MS$ |          |        |             |             |                         |                         |          |
|---------------|---------------|-----|-----------------|-------------|-------------|----------|---------------------------|----------|--------|-------------|-------------|-------------------------|-------------------------|----------|
| Duckbone      | (M)           | (G) | AP <sup>b</sup> | $AP_{50}^b$ | $AP_{75}^b$ | $AP_S^b$ | $\operatorname{AP}^b_M$   | $AP_L^b$ | $AP^b$ | $AP_{50}^b$ | $AP_{75}^b$ | $\operatorname{AP}_S^b$ | $\operatorname{AP}^b_M$ | $AP_L^b$ |
| ResNet50      | 38            | 239 | 36.3            | 55.3        | 38.6        | 19.3     | 40.0                      | 48.8     | 39.0   | 58.4        | 41.8        | 22.4                    | 42.8                    | 51.6     |
| PVT-Small     | 34            | 226 | 40.4            | 61.3        | 43.0        | 25.0     | 42.9                      | 55.7     | 42.2   | 62.7        | 45.0        | 26.2                    | 45.2                    | 57.2     |
| Swin-T        | 39            | 245 | 41.5            | 62.1        | 44.2        | 25.1     | 44.9                      | 55.5     | 43.9   | 64.8        | 47.1        | 28.4                    | 47.2                    | 57.8     |
| LaViT-T(ours) | 33            | 202 | 46.2            | 67.2        | 49.1        | 29.6     | 50.2                      | 61.3     | 48.4   | 69.9        | 51.7        | 31.8                    | 52.2                    | 64.1     |
| ResNet101     | 58            | 315 | 38.5            | 57.8        | 41.2        | 21.4     | 42.6                      | 51.1     | 40.9   | 60.1        | 44.0        | 23.7                    | 45.0                    | 53.8     |
| PVT-M         | 54            | 283 | 41.9            | 63.1        | 44.3        | 25.0     | 44.9                      | 57.6     | 43.2   | 63.8        | 46.1        | 27.3                    | 46.3                    | 58.9     |
| Swin-S        | 60            | 335 | 44.5            | 65.7        | 47.5        | 27.4     | 48.0                      | 59.9     | 46.3   | 67.4        | 49.8        | 31.1                    | 50.3                    | 60.9     |
| LaViT-S(ours) | 47            | 290 | 46.7            | 68.3        | 49.7        | 29.9     | 50.7                      | 61.7     | 48.9   | 70.3        | 52.2        | 33.1                    | 52.6                    | 65.4     |

Table 3. Results on COCO object detection using the RetinaNet [12] framework.  $1 \times$  refers to 12 epochs, and  $3 \times$  refers to 36 epochs. MS means multi-scale training. AP<sup>b</sup> and AP<sup>m</sup> denotes box mAP and mask mAP, respectively. FLOPs are measured at resolution 800 × 1280.

| Dealthana    | Se        | emantic FPN 8 | 0k       | UperNet 160K |           |          |             |  |
|--------------|-----------|---------------|----------|--------------|-----------|----------|-------------|--|
| Backbone F   | Param (M) | FLOPs (G)     | mIOU (%) | Param (M)    | FLOPs (G) | mIOU (%) | MS mIOU (%) |  |
| ResNet-50    | 28.5      | 183           | 36.7     | -            | -         | -        | -           |  |
| Swin-T       | 31.9      | 182           | 41.5     | 59.9         | 945       | 44.5     | 45.8        |  |
| <b>PVT-S</b> | 30.2      | 146           | 43.2     | -            | -         | -        | -           |  |
| Twin-S       | 28.3      | 144           | 43.2     | 54.4         | 932       | 46.2     | 47.1        |  |
| LiT-S        | 32.0      | 172           | 41.3     | 57.8         | 978       | 44.6     | 45.9        |  |
| Focal-T      | -         | -             | -        | 62.0         | 998       | 45.8     | 47.0        |  |
| LaViT-S      | 25.1      | 122           | 44.1     | 52.0         | 920       | 47.2     | 49.5        |  |

Table 4. Segmentation performance of different backbones in Semantic FPN and UpperNet framework on ADE20K. The least computation appears in **blue bold**, and the best results appear in **bold**.

## Experiments

### • Extensibility

| Backbone               | Tin                   | iy                                                            | Sm           | all          |
|------------------------|-----------------------|---------------------------------------------------------------|--------------|--------------|
|                        | Top-1 Acc(%)          | FLOPs (G)                                                     | Top-1 Acc(%) | FLOPs (G)    |
| ViT                    | 72.2                  | 1.4                                                           | 79.1         | 4.6          |
| ViT <sub>+LA</sub>     | 73.2(† 1.0)           | 1.2(↓ 14.2%)                                                  | 80.0(↑ 0.9)  | 4.0(↓ 13.1%) |
| DeiT                   | 72.2                  | 1.4                                                           | 79.9         | 4.7          |
| DeiT <sub>+LA</sub>    | 73.4(† 1.2)           | 1.2(↓ 14.2%)                                                  | 80.4(↑ 0.5)  | 4.2(↓ 10.6%) |
| DeepViT                | 73.4                  | 1.5                                                           | 80.9         | 4.8          |
| DeepViT <sub>+LA</sub> | 73.8(↑ 0.4)           | 1.1(↓ 25.8%)                                                  | 81.4(↑ 0.5)  | 4.2(↓ 12.6%) |
| CeiT                   | 76.2                  | 1.2                                                           | 82.0         | 4.5          |
| CeiT <sub>+LA</sub>    | 76.7(† 0.5)           | 1.1(↓ 9.0%)                                                   | 82.4(↑ 0.4)  | 4.1(↓ 8.8%)  |
| HVT                    | 75.7                  | $\begin{array}{c} 1.4 \\ 1.2 (\downarrow 15.2\%) \end{array}$ | 80.4         | 4.6          |
| HVT+LA                 | 76.2( $\uparrow$ 0.5) |                                                               | 80.8(↑ 0.4)  | 4.2(↓ 13.4%) |
| PVT                    | 75.1                  | 1.9                                                           | 79.8         | 3.8          |
| PVT <sub>+LA</sub>     | 75.9(† 0.8)           | 1.4(↓ 25.6%)                                                  | 80.4(↑ 0.6)  | 3.2(↓ 15.7%) |
| Swin                   | 81.2                  | 4.5                                                           | 83.2         | 8.7          |
| Swin <sub>+LA</sub>    | 81.7(↑ 0.5)           | 4.0(↓ 11.1%)                                                  | 83.5(↑ 0.3)  | 7.8(↓ 10.3%) |

The incorporation of the Less-Attention layer into any of the foundational Transformer architectures leads to enhancements in accuracy while concurrently reducing computational demands.

## Experiments

### • Indispensibility

| Model                           | Module       |              |                          | Tion                    | S-mall                  |  |
|---------------------------------|--------------|--------------|--------------------------|-------------------------|-------------------------|--|
|                                 | AR           | LA           | $\mathcal{L}_{	ext{DP}}$ | Tiny                    | Sman                    |  |
| w/o LA                          | -            | -            | -                        | 78.7                    | 82.0                    |  |
| w/o AR                          | -            | $\checkmark$ | $\checkmark$             | 79.0                    | 82.2                    |  |
| LaViT                           | $\checkmark$ | $\checkmark$ | $\checkmark$             | 79.2                    | 82.6                    |  |
| w/o $\mathcal{L}_{\mathrm{DP}}$ | $\checkmark$ | $\checkmark$ | -                        | $59.1(\downarrow 20.1)$ | $57.1(\downarrow 25.5)$ |  |

All these experimental findings collectively emphasize the contribution of each component within our model architecture

## Conclusion

 Aiming to reduce the costly self-attention computations, we designed a novel plugin Less-Attention module on VTs. It leverages the computed dependency in M-BA blocks and bypasses the attention computation by reusing attentions from previous M-BA blocks. Our architecture effectively captures cross-token associations, surpassing the performance of the baseline while maintaining a computationally efficient profile in terms of parameters and floating-point operations per second (FLOPs).

