

Visual Programming for Zero-shot Open-Vocabulary 3D Visual Grounding

Zhihao Yuan^{1,2}, Jinke Ren^{1,2}, Chun-Mei Feng³, Hengshuang Zhao⁴, Shuguang Cui^{2,1}, Zhen Li^{2,1}

¹The Future Network of Intelligence Institute, The Chinese University of Hong Kong (Shenzhen) ²School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen) ³IHPC, A*STAR, Singapore ⁴The University of Hong Kong

Background

> Problem

- Explore zero-shot 3DVG using LLMs, without the need of object-text pair annotation.
- > Solve relationships between objects explicitly.

a) Supervised 3D Visual Grounding

站合得统与现代 · 融會中國 5 西方

Tradition with Modernity

Background

> Problems

- Explore zero-shot 3DVG using LLMs, without the need of object-text pair annotation
- > Solve relationships between objects explicitly

b) Zero-shot 3D Visual Grounding

- Dialog with LLM: A Naive Approach
 - > Detect all objects in the scene, describe object's location and size.
 - ➢ Given the text prompt to ChatGPT to find the correct object.

Suppose you are a person standing in a room. You need to find a keyboard it is closest to the door.

Of course, I can help you find an object in a room based on its description. Please provide me with the details of the object you're looking for, and I'll do my best to assist you in locating it.

Room Information: Object I is a door located at (-0.65, 2.35, 1.05). Object 2 is a desk located at (0.68, 1.30, 0.39).

Object 26 is a keyboard located at (-0.65, -1.06, 0.65).

结合得纸:现代·融會中國公西方

- Dialog with LLM: A Naive Approach
 - > Detect all objects in the scene, describe object's location and size.
 - ➢ Given the text prompt to ChatGPT to find the correct object.

Suppose you are a person standing in a room. You need to find a keyboard it is closest to the door.

Of course, I can help you find an object in a room based on its description. Please provide me with the details of the object you're looking for, and I'll do my best to assist you in locating it.

Room Information:

- Object I is a door located at (-0.65, 2.35, 1.05).
- Object 2 is a desk located at (0.68, 1.30, 0.39).

Object 26 is a keyboard located at (-0.65, -1.06, 0.65).

The keyboard closest to the door is Object 9, as it has a shorter distance of approximately 2.01 units, compared to Object 26, which has a distance of approximately 3.44 units. So, the correct object ID is Object 9.

结合得纸:现代·融會中國公西方

结合得统与现代 · 融會中國 5 西方

To Combine Tradition with Modernity To Brung Together China and the West

➢ 3D visual programming approach.

Relation modules

View-independent

View-dependent

Functional

- ➢ Addressing view-dependent relations: A shift to 2D egocentric view.
- Addressing view-independent relations: using 3D coordinates.

Up

Figure 3. Addressing view-dependent relations: A shift to 2D egocentric view.

eendentnear, close, next to, far, above, below,
under, top, on, opposite, middleendentfront, behind, back, right, left, facing,
leftmost, rightmost, looking, across, be-
tweennalmin, max, size, length, widthTable 1. Common relations in 3DVG.

站合得统与现代 · 融會中國 5 西方

To Combine Tradition with Modernity

Left Window

LOC module: extend the scope of existing 3D object detectors into open-vocabulary scenarios.

Figure 4. Illustration of the language-object correlation module.

Figure 2. Open-vocabulary query: *A brown closed cabinet. It is broad and spacious.* Supervised approach can only predict the *cabinet*, while our approach uses image models to distinguish objects with similar geometry (red and green boxes).

站合傳統:明代·融會中國:西方

Quantitative Analysis

- ScanRefer dataset
 - Our zero-shot approach can outperform some supervised baselines
 - Moreover, our zero-shot approach outperforms the approaches that only utilize the 3D or 2D information in the LOC module.

		Uni	que	Mult	iple	Ove	rall
Methods	Supervision	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5	Acc@0.25	Acc@0.5
ScanRefer [4]	fully	65.0	43.3	30.6	19.8	37.3	24.3
TGNN [17]	fully	64.5	53.0	27.0	21.9	34.3	29.7
InstanceRefer [60]	fully	77.5	66.8	31.3	24.8	40.2	32.9
3DVG-Transformer [65]	fully	81.9	60.6	39.3	28.4	47.6	34.7
BUTD-DETR [20]	fully	84.2	66.3	46.6	35.1	52.2	39.8
LERF [23]	-	-	-	-	-	4.8	0.9
OpenScene [34]	-	20.1	13.1	11.1	4.4	13.2	6.5
Ours (2D only)	-	32.5	27.8	16.1	14.6	20.0	17.6
Ours (3D only)	-	57.1	49.4	25.9	23.3	33.1	29.3
Ours	-	63.8	58.4	27.7	24.6	36.4	32.7

Quantitative Analysis

- > We ablate different relation modules in to analyze their impact.
- > Our framework has strong adaptability for a spectrum of 3D and 2D perception models.

LEFT	RIGHT	FRONT	BEHIND	BETWEEN	Accuracy
					26.5
\checkmark					32.4
\checkmark	\checkmark				35.9
\checkmark	\checkmark	\checkmark			36.8
\checkmark	\checkmark	\checkmark	\checkmark		38.4
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	39.0

Table 5. Ablation study of different view-dependent modules.

CLOSEST	FARTHEST	LOWER	HIGHER	Accuracy
				18.8
\checkmark				30.7
\checkmark	\checkmark			34.0
\checkmark	\checkmark	\checkmark		36.8
\checkmark	\checkmark	\checkmark	\checkmark	39.0

Table 6. Ablation study of different view-independent modules.

2D Assistance	Unique	Multiple	Acc@0.25
CLIP	62.5	27.1	35.7
ViLT	60.3	27.1	35.1
BLIP-2	63.8	27.7	36.4

Table 7. Ablation study on different 2D models.

3D Backbone	View-dep.	View-indep.	Overall
PointNet++	35.8	39.4	38.2
PointBert	36.0	39.8	38.6
PointNeXt	36.8	40.0	39.0

Table 8. Ablation study on different 3D backbones.

Qualitative Analysis

Visualization results of 3D visual grounding.

Conclusion

- ➢ Introduces a novel zero-shot 3DVG approach, removing the need for extensive annotations.
- > Enhances localization accuracy with relation modules and a language-object correlation module.
- Experiments on ScanRefer and Nr3d datasets show the method outperforms several supervised baselines.