

## **Riemannian Multinomial Logistics Regression for SPD Neural Networks**

## – CVPR 2024 –

Ziheng Chen<sup>1</sup>, Yue Song<sup>1</sup>, Gaowen Liu<sup>2</sup>, Ramana Rao Kompella<sup>2</sup>, Xiaojun Wu<sup>3</sup>, Nicu Sebe<sup>1</sup>

**1** University of Trento, Italy 2 Cisco Systems, USA 3 Jiangnan University, China





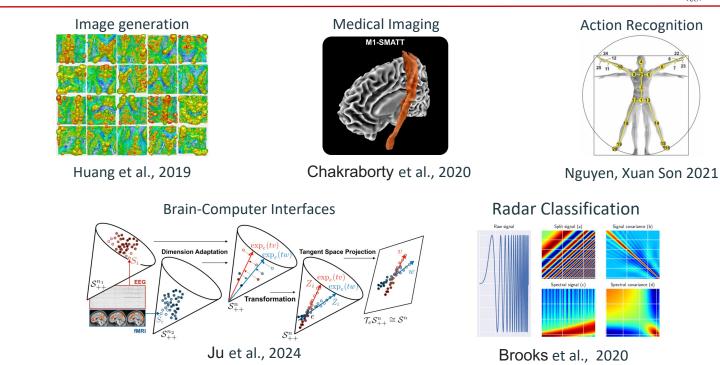




# **Applications of SPD Manifolds**



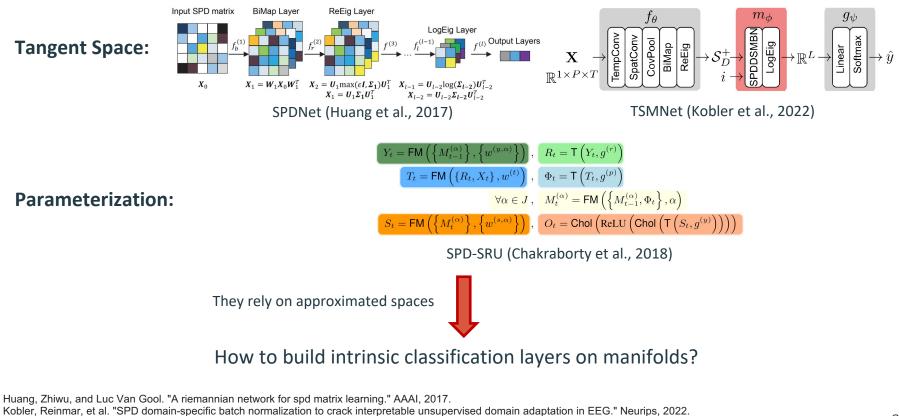
2



Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Manifold-valued image generation with wasserstein generative adversarial nets." AAAI, 2019. Chakraborty, Rudrasis, et al. "Manifoldnet: A deep neural network for manifold-valued data with applications." IEEE-TPAMI, 2020. Ju, Ce, et al. "Deep geodesic canonical correlation analysis for covariance-based neuroimaging data." ICLR, 2024. Nguyen, Xuan Son. "Geomnet: A neural network based on riemannian geometries of SPD matrix space and cholesky space for 3D skeleton-based interaction recognition." ICCV, 2021. Brooks, Daniel, et al. "Deep learning and information geometry for drone micro-Doppler radar classification." RadarConf, 2020.

## **Classification on SPD Neural Networks**





Chakraborty, Rudrasis, et al. "A statistical recurrent model on the manifold of symmetric positive definite matrices." Neurips, 2018.



### SPDMLR:

- A general framework for SPD Multinomial Logistics Regression (MLR) under PEMs
- Specific SPD MLRs under parameterized LCM and LEM
- An intrinsic theoretical explanation of the most popular LogEig classifier

## **MLR Revisiting**



 $\forall k \in \{1, \dots, C\}, p(y = k \mid x) \propto \exp\left(\left(\langle a_k, x \rangle - b_k\right)\right)$ Reformulation into margin distance
to hyperplane  $p(y = k \mid x) \propto \exp(\operatorname{sign}(\langle a_k, x - p_k \rangle) ||a_k|| d(x, H_{a_k, p_k}))$   $H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\}$ 

### **Gyro SPD MLR:**

**Euclidean MLR:** 

- Requires gyro vector structures
- Relies on gyro distance, instead of geodesic distance
- Solves formulation case by case

### **Our SPD MLR:**

- Focus on Pullback Euclideam Metrics (PEMs)
- Only needs Riemannian geometry
- Relies on geodesic distance
- Proposes a general formulation for PEMs

## **SPD MLR under PEMs**



### From Euclidean to SPD

 $p(y = k \mid x) \propto \exp(\operatorname{sign}(\langle a_k, x - p_k \rangle) \| a_k \| d(x, H_{a_k, p_k})) \qquad H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\}$ Riemannian reformulation

**Definition 3.1** (SPD hyperplanes). Given  $P \in S_{++}^n$ ,  $A \in T_P S_{++}^n \setminus \{0\}$ , we define the SPD hyperplane as

$$\tilde{H}_{A,P} = \{ S \in \mathcal{S}_{++}^n : g_P(\operatorname{Log}_P S, A) = \langle \operatorname{Log}_P S, A \rangle_P = 0 \},$$
(12)

where P and A are referred to as shift and normal matrices, respectively.

Definition 3.2 (SPD MLR). SPD MLR is defined as

$$p(y = k \mid S) \propto \exp(\operatorname{sign}(\langle A_k, \operatorname{Log}_{P_k}(S) \rangle_{P_k}) \|A_k\|_{P_k} d(S, \tilde{H}_{A_k, P_k})),$$
(13)

where  $P_k \in S_{++}^n$ ,  $A_k \in T_{P_k}S_{++}^n \setminus \{0\}$ ,  $\langle \cdot, \cdot \rangle_{P_k} = g_{P_k}$ , and  $\|\cdot\|_{P_k}$  is the norm on  $T_{P_k}S_{++}^n$  induced by g at  $P_k$ , and  $\tilde{H}_{A_k,P_k}$  is a margin hyperplane in  $S_{++}^n$  as defined in Eq. (12).  $d(S, \tilde{H}_{A_k,P_k})$  denotes the margin distance between S and SPD hyperplane  $\tilde{H}_{A_k,P_k}$ , which is formulated as:

$$l(S, \tilde{H}_{A_k, P_k})) = \inf_{Q \in \tilde{H}_{A_k, P_k}} d(S, Q), \tag{14}$$

where d(S, Q) is the geodesic distance induced by g.

**Proposition 3.3** (Submanifolds). *The SPD hyperplane (as defined in Eq.* (12)) *under any geometrically complete Riemannian metric g is a regular submanifold of SPD manifolds.* 

#### Submanifolds are natural generalizations of the Euclidean hyperplanes.

## **SPD MLR under PEMs**



### Margin distance and MLR

Margin distance:

$$d(S, \tilde{H}_{A_k, P_k})) = d(\phi(S), H_{\phi_{*, P_k}(A_k), \phi(P_k)}),$$
(15)

$$=\frac{|\langle\phi(S) - \phi(P_k), \phi_{*, P_k}(A_k)\rangle|}{\|A_k\|_{P_k}},$$
(16)

where  $|\cdot|$  is the absolute value.

under a PEM.

### Optmization:

General formulation:

**Lemma 3.6.** Given a PEM, any parallel transportation is equivalent to the differential map of a left translation and vice versa. **Lemma 3.7.** Given two fixed SPD matrices  $Q_1, Q_2 \in S_{++}^n$ , we have the following equivalence for parallel transportations

$$\forall \tilde{A}_{1,k} \in T_{Q_1} \mathcal{S}^n_{++}, \exists ! \tilde{A}_{2,k} \in T_{Q_2} \mathcal{S}^n_{++},$$

$$s.t. \Gamma_{Q_1 \to P_k}(\tilde{A}_{1,k}) = \Gamma_{Q_2 \to P_k}(\tilde{A}_{2,k}).$$

$$(18)$$

### **Theorem 3.8** (SPD MLR under a PEM). Under any PEM, SPD MLR and SPD hyperplane is

$$\phi(y = k \mid S) \propto \exp(\langle \phi(S) - \phi(P_k), \phi_{*,I}(\tilde{A}_k) \rangle), \tag{19}$$

$$\tilde{H}_{\tilde{A}_{k},P_{k}} = \{ S \in \mathcal{S}_{++}^{n} : \langle \phi(S) - \phi(P_{k}), \phi_{*,I}(\tilde{A}_{k}) \rangle = 0 \},$$
(20)

where  $\tilde{A}_k \in T_I \mathcal{S}_{++}^n / \{0\} \cong \mathcal{S}^n / \{0\}$  is a symmetric matrix, and  $P_k \in \mathcal{S}_{++}^n$  is an SPD matrix.

### MLR on the parameterized LEM and LCM



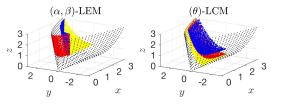
**Corollary 4.1** (SPD MLRs under the deformed LEM and LCM). *The SPD MLRs under*  $(\alpha, \beta)$ -*LEM is* 

$$p(y = k \mid S) \propto \exp\left[\langle \operatorname{mlog}(S) - \operatorname{mlog}(P_k), \tilde{A}_k \rangle^{(\alpha, \beta)}\right],$$
(21)

where  $\tilde{A}_k \in T_I \mathcal{S}_{++}^n \cong \mathcal{S}^n$  and  $P_k \in \mathcal{S}_{++}^n$ . The SPD MLRs under  $(\theta)$ -LCM is

 $p(y = k \mid S) \propto \exp\left[\frac{1}{\theta} \langle \lfloor \tilde{K} \rfloor - \lfloor \tilde{L}_k \rfloor + \left[ \operatorname{Dlog}(\mathbb{D}(\tilde{K})) - \operatorname{Dlog}(\mathbb{D}(\tilde{L}_k)) \right], \lfloor \tilde{A}_k \rfloor + \frac{1}{2} \mathbb{D}(\tilde{A}_k) \rangle \right],$ (22)

where  $\tilde{K} = \text{Chol}(S^{\theta})$ ,  $\tilde{L}_k = \text{Chol}(P_k^{\theta})$ , and  $\mathbb{D}(\tilde{A}_k)$  denotes a diagonal matrix with diagonal elements of  $\tilde{A}_k$ .



### Visualization of SPD hyperplane

Figure 1. Conceptual illustration of SPD hyperplanes induced by  $(\alpha, \beta)$ -LEM and  $(\theta)$ -LCM. In each subfigure, the black dots are symmetric positive semi-definite (SPSD) matrices, denoting the boundary of  $S^2_{++}$ , while the blue, red, and yellow dots denote three SPD hyperplanes.

## **Experiments**



| Backbone | Classifier             | [20,16,8]                | [20,16,14,12,10,8]              |
|----------|------------------------|--------------------------|---------------------------------|
| SPDNet   | LogEig MLR<br>Gyro-AIM | 92.88±1.05<br>94.53±0.95 | 93.47±0.45<br>94.32±0.94        |
|          | (1,0)-LEM<br>(1,1)-LEM | 93.55±1.21<br>95.64±0.83 | 94.60±0.70<br><b>95.87±0.58</b> |
|          | (1)-LCM<br>(0.5)-LCM   | 93.49±1.25<br>94.59±0.82 | 93.93±0.98<br><b>95.16±0.67</b> |

| Backbone | Classifier | [93,30]    | [93,70,30] | [93,70,50,30] |
|----------|------------|------------|------------|---------------|
|          | LogEig MLR | 57.42±1.31 | 60.69±0.66 | 60.76±0.80    |
|          | Gyro-AIM   | 58.07±0.64 | 60.72±0.62 | 61.14±0.94    |
| SPDNet   | (1,0)-LEM  | 57.02±0.75 | 61.34±0.62 | 60.78±0.86    |
|          | (1)-LCM    | 62.04±1.05 | 62.11±2.11 | 62.89±2.09    |
|          | (0.5)-LCM  | 65.66±0.73 | 65.79±0.63 | 65.71±0.75    |

Table 3. Results of SPDNet with different classifiers on the Radar dataset.

| Backbone | Classifier             | Inter-session            | Inter-subject            |
|----------|------------------------|--------------------------|--------------------------|
| SPDDSMBN | LogEig MLR<br>Gyro-AIM | 53.83±9.77<br>53.36±9.92 | 49.68±7.88<br>50.65±8.13 |
|          | (1,0)-LEM              | 53.16±9.73               | 51.41±7.98               |
|          | (1)-LCM<br>(1.5)-LCM   | 55.71±8.57<br>56.43±8.79 | 51.60±8.43<br>51.65±5.90 |

Table 5. Results of SPDDSMBN with different classifiers on the Hinss2021 dataset under inter-subject and inter-session scenarios. The presented results are the ones of balanced accuracy under the leaving 5% out cross-validation scenario.

Table 4. Results of SPDNet with different classifiers on theHDM05 dataset.

|              |       |       | Hinss2021     |               |
|--------------|-------|-------|---------------|---------------|
| Methods      | Radar | HDM05 | inter-session | inter-subject |
| Baseline     | 1.36  | 1.95  | 0.18          | 8.31          |
| MLR-Gyro-AIM | 1.75  | 31.64 | 0.38          | 13.3          |
| MLR-LEM      | 1.5   | 4.7   | 0.24          | 10.13         |
| MLR-LCM      | 1.35  | 3.29  | 0.18          | 8.35          |

Table 6. Comparison of training efficiency (s/epoch) of SPDNet (SPDDSMBN) under different classifiers. The most efficient MLR is highlighted in **bold**.

Huang, Zhiwu, and Luc Van Gool. "A riemannian network for spd matrix learning." AAAI, 2017.

Kobler, Reinmar, et al. "SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG." Neurips, 2022.





# Thanks you Q & A



Code



Paper



Homepage