

SI-MIL: Taming Deep MIL for Self-Interpretability in Gigapixel Histopathology

Saarthak Kapse¹*, Pushpak Pati^{*}, Srijan Das², Jingwei Zhang¹, Chao Chen¹, Maria Vakalopoulou³, Joel Saltz¹, Dimitris Samaras¹, Rajarsi R. Gupta¹, Prateek Prasanna¹ ¹Stony Brook University, NY, USA, ²UNC Charlotte, USA, ³CentraleSupelec, University of Paris-Saclay, France

Computational Pathology workflow

Unlike natural images, digitized biopsies of tissue samples (also called whole slide images - WSI) are gigapixel in nature.

Interpretability in current MIL frameworks

Existing MIL approaches can only provide patch-level interpretability.

Motivation

Handcrafted Pathology features

Handcrafted feature extraction

- Pathologist-friendly interpretability directly encoded in the feature embedding.
- However handcrafted feature-reliant workflows often perform subpar.

Can we jointly leverage both to provide feature-level interpretability along with high performance?

• For each WSI, patches and its nuclei maps are extracted. This is followed by extracting deep features and handcrafted pathology feature for each patch.

• Conventional MIL branch aggregates the patch-level deep features using attention-based MIL to do WSI-level prediction.

• Patch Attention-Guided Top-K (PAG Top-K) module differentiably selects the top attended K patches by Conventional MIL branch.

• Self-Interpretable branch linearly aggregates the handcrafted features belonging to Top-K patches for WSI-level prediction, while providing feature-wise attention scores.

Quantitative Results

Novel co-learning of dual branches in SI-MIL mitigates the performanceinterpretability trade-off associated with self-interpretable methods.

SI-MIL (ours)

 \checkmark

0.941

A I I C

0.968

0.910

Dataset:				AUC			
[TCGA-Lung (N = 936)			Int.	Lung	BRCA	CRC
_	(LUAD vs. LUSC)		IN ViT-S	X	0.919	0.967	0.898
	TCGA-BRCA (N = 910) (IDC vs. ILC)	RetCCL	X	0.935	0.976	0.891	
			CTransPath	X	0.967	0.974	0.897
	TCGA-CRC (N = 320) (Hypermutated vs. not)		DINO ViT-S	×	0.957	0.974	0.897
			PathFeat	X	0.888	0.950	0.818
			PathFeat w/o $H(\cdot)$	\checkmark	0.837	0.914	0.720
			2-stage training	\checkmark	0.932	0.924	0.862

Automated patch and feature importance report

Unlike other MILs, SI-MIL provides de novo feature-level interpretation grounded on pathological insights.

Thank you!

Poster discussion 10:30AM - 12 Noon Thu 06/20

Email: saarthak.kapse@stonybrook.edu