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Computational Pathology workflow 

Unlike natural images, digitized biopsies of tissue samples (also called whole slide 
images - WSI) are gigapixel in nature.
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Interpretability in current MIL frameworks

Existing MIL approaches can only provide patch-level interpretability.

What it can tell!

What it cannot!

Lu, Ming Y., et al. "Data-efficient and weakly 
supervised computational pathology on whole-slide 
images." Nature biomedical engineering (2021).



Motivation

Handcrafted Pathology features
Deep features

Can we jointly leverage both to provide feature-level interpretability along with high performance?

• Deep neural network-reliant workflows yield 
high performance.

• However deep features are generally non-
interpretable.
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• Pathologist-friendly interpretability directly 
encoded in the feature embedding.

• However handcrafted feature-reliant workflows 
often perform subpar.
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Overview

• For each WSI, patches and its nuclei maps are extracted. This is followed by 
extracting deep features and handcrafted pathology feature for each patch.
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Overview

• Conventional MIL branch aggregates the patch-level deep features using 
attention-based MIL to do WSI-level prediction.
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Overview

• Patch Attention-Guided Top-K (PAG Top-K) module differentiably selects the top 
attended K patches by Conventional MIL branch.
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Overview

• Self-Interpretable branch linearly aggregates the handcrafted features belonging to 
Top-K patches for WSI-level prediction, while providing feature-wise attention scores.
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Quantitative Results

Dataset:  
TCGA-Lung (N = 936)

(LUAD vs. LUSC)

TCGA-BRCA (N = 910)
(IDC vs. ILC)

TCGA-CRC (N = 320)
(Hypermutated vs. not)

Novel co-learning of dual branches in SI-MIL mitigates the performance-
interpretability trade-off associated with self-interpretable methods.

AUC



Automated patch and feature importance report

Unlike other MILs, SI-MIL provides de novo feature-level interpretation 
grounded on pathological insights.
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