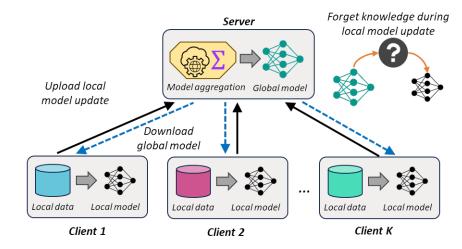


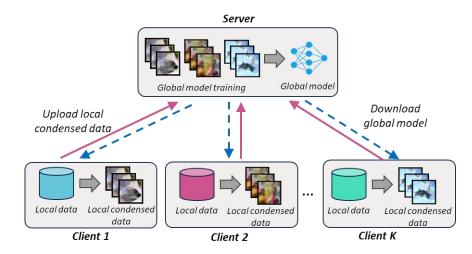
An Aggregation-Free Federated Learning for Tackling Data Heterogeneity


Dr WANG Yuan Senior Scientist, Computing & Intelligence, IHPC June 2024 ARES Classification

CREATING GROWTH, ENHANCING LIVES

(1)

Background and motivation



- Traditional FL requires clients to update local model upon globally-aggregated server model
- Sharing local model/gradients are prone to gradient leakage attack and communicationconsuming
- □ Local update process can lead to forgetting of knowledge learned in previous global model, causing client drift and inferior convergence performance in non-IID scenarios

Methodology and contribution



- □ We employ a novel model-aggregation-free framework to replace traditional modelsharing FL strategies
- Model is trained only at the server, clients instead focus solely on learning and sharing a compact set of synthetic data, i.e., condensed data

(1001) 1001

Methodology and contribution

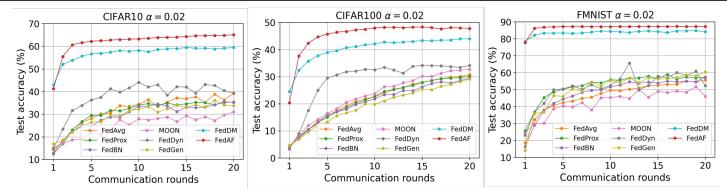
- Learning local condensed data is enhanced by utilizing broader peer knowledge through Collaborative Data Condensation
- Global model training is enhanced with Local-Global Knowledge Matching, utilizing more global insights other than condensed data only, improving the learning performance
- Improves convergence performance over traditional FL methods in the context of non-IID cross-client data distribution

1001

Method in detail – FedAF framework

$$+ \lambda_{\text{loc}} \sum_{c=0}^{C-1} \mathcal{F}\Big(\mathbf{u}_{k,c}(\mathcal{S}_k), \mathbf{v}_c(\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K)\Big),$$

Clients:

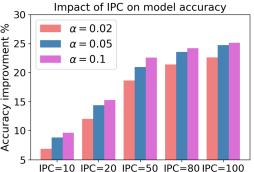

- 1) download global model and class-wise mean logits
- 2) update local condensed data using Distribution Matching loss regularized by Collaborative Data Condensation loss

Sever:

- 1) receive logits from clients and compute soft labels
- 2) update the global model using cross-entropy loss regularized by Local-Global Knowledge Matching loss

 $\mathcal{L}_{\text{LGKM}}(\mathbf{w}, S) = \frac{1}{2} \left(D_{\text{KL}}(\mathcal{R} || \mathcal{T}) + D_{\text{KL}}(\mathcal{T} || \mathcal{R}) \right)$

Methods	FMNIST	$\begin{array}{l} \alpha = 0.02 \\ \ \text{CIFAR10} \end{array}$	CIFAR100	FMNIST	$\begin{array}{l} \alpha = 0.05 \\ \text{CIFAR10} \end{array}$	CIFAR100	FMNIST	$\begin{array}{c} \alpha = 0.1 \\ \text{CIFAR10} \end{array}$	CIFAR100
FedAvg	56.50 ± 5.55	39.71±1.15	30.80±2.20	69.14±5.84	46.51±3.07	33.37±0.75	82.19±5.67	56.15±4.62	39.97±1.53
FedProx	60.38 ± 5.00	36.46 ± 5.39	30.82 ± 0.80	69.33±4.12	45.83 ± 2.23	36.61 ± 1.44	81.56 ± 4.52	58.54 ± 1.87	40.45 ± 1.53
FedBN	58.26 ± 4.28	36.53 ± 2.52	29.73±1.73	72.91±4.69	45.13±2.18	33.73 ± 2.15	77.33 ± 3.07	57.67±3.21	39.84±0.20
MOON	51.33 ± 7.00	33.32 ± 1.13	33.41±0.70	71.41 ± 4.08	47.41±4.59	37.90 ± 0.80	81.61±2.68	57.62 ± 4.99	40.24 ± 0.68
FedDyn	69.79 ± 5.04	45.73±3.98	35.01 ± 2.07	75.19 ± 5.49	57.68±1.84	39.10±0.34	84.73±2.74	59.97±2.20	41.81 ± 1.46
FedGen	$61.44{\pm}2.07$	36.61±1.06	29.20±2.09	75.48±1.83	42.72 ± 2.11	33.56 ± 3.91	82.29±2.53	58.17±2.84	40.23 ± 1.06
FedDM FedAF	85.36±0.96 87.53+0.32		44.15±0.30 48.71±0.33						


Performance for label-skew non-IID scenarios (FMNIST, CIFAR10, CIFAR100) Please see our papers for the complete set of learning curves

		DomainNet
Methods C I P	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
FedProx 44.81 43.76 60.22 33 FedBN 46.07 34.27 52.01 44 MOON 48.80 37.97 56.26 44 FedDyn 48.04 60.03 67.46 37	9.60 41.03 28.46 42.01 5 45 8.13 41.55 29.18 42.94 5 5 35 3.10 47.33 29.72 42.08 5 35 8.07 42.02 29.72 43.81 5 5 5 5 7.73 41.77 32.67 47.95 5	
FedDM 52.28 41.38 60.58 <u>6</u> 2	$\frac{52.37}{54.6} \frac{52.45}{52.64} \frac{46.69}{50.06} \frac{52.62}{54.68} $	FedBN FedGen
		Communication rounds

Performance for feature-skew non-IID scenarios (DomainNet)

Configuration	n α =0.02 α =0.05 α =0.1	%
IPC=10	53.39±2.09 55.33±0.81 56.15±0.42	nent
IPC=20	58.56±0.55 60.89±0.11 61.79±0.59	orovme
IPC=50	65.15±0.86 67.50±0.76 69.11±0.86	v impi
IPC=80	67.94±1.18 70.07±0.45 70.72±0.37	Accuracy
IPC=100	$ 69.14 \pm 0.56 71.27 \pm 0.58 71.66 \pm 0.37$	Acc

Impact of different Image-Per-Class (IPC) values, see our paper for more ablation studies

Configuration	<i>α</i> =0.02	<i>α</i> =0.05	<i>α</i> =0.1
FedAF	65.15±0.86	67.50±0.76	69.11±0.86
w/o CDC	64.16±0.83	65.88±0.93	67.90±0.53
w/o LGKM	64.12±0.85	66.27±1.31	68.14±0.81
FedDM	60.28±0.82	2 62.97±0.96	64.88±0.35

Impact of individual modules

 $\mathbf{w} \leftarrow \gamma \mathbf{w} + (1 - \gamma) \tilde{\mathbf{w}}$

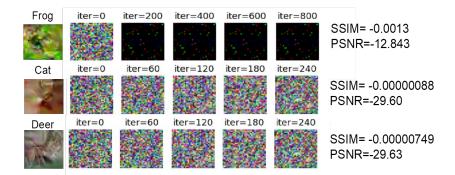
γ	0.2	0.5	0.8	0.9	1.0
Accuracy	61.30	63.52	66.15	66.97	64.92

Impact of model resampling

Methods	<i>α</i> =0.02	<i>α</i> =0.05	<i>α</i> =0.1
FedAvg	26.48 ± 0.58	32.72 ± 2.47	35.85 ± 3.73
FedProx	26.86 ± 2.69	32.73 ± 2.45	36.25 ± 2.96
FedBN	27.00 ± 2.49	30.29 ± 3.38	35.48 ± 3.45
MOON	29.59 ± 3.57	33.11 ± 3.74	37.26 ± 2.66
FedDyn	22.67 ± 1.54	29.89 ± 4.48	35.38 ± 1.56
FedGen	26.63 ± 2.07	32.48 ± 3.04	38.85 ± 2.00
FedDM FedAF	39.18±0.29 41.10±0.50	39.47±0.66 41.40±0.66	40.83±0.67 42.93±0.29

Results with ResNet18

Dataset	α	Cl FedAvg	NN FedAF	ResN FedAvg	et18 FedAF
FMNIST	0.02 0.05 0.1	1.46 MB	0.06 MB 0.09 MB 0.14 MB	42.65 MB	0.06 MB 0.09 MB 0.14 MB
CIFAR10	0.02 0.05 0.1	1.46 MB	0.22 MB 0.31 MB 0.44 MB	42.65 MB	0.22 MB 0.31 MB 0.44 MB
CIFAR100	0.02 0.05 0.1	1.46 MB	1.93 MB 2.46 MB 3.22 MB	42.65 MB	1.93 MB 2.46 MB 3.22 MB


Comparison for communication cost

Visual privacy and attack robustness

Illustrative examples of learned condensed data

Results from reconstruction attack

Thank you so much!

Contact: wang_yuan@ihpc.a-star.edu.sg